10 resultados para Limited power supply
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
An implantable transducer for monitoring the flow of Cerebrospinal fluid (CSF) for the treatment of hydrocephalus has been developed which is based on measuring the heat dissipation of a local thermal source. The transducer uses passive telemetry at 13.56 MHz for power supply and read out of the measured flow rate. The in vitro performance of the transducer has been characterized using artificial Cerebrospinal Fluid (CSF) with increased protein concentration and artificial CSF with 10\% fresh blood. After fresh blood was added to the artificial CSF a reduction of flow rate has been observed in case that the sensitive surface of the flow sensor is close to the sedimented erythrocytes. An increase of flow rate has been observed in case that the sensitive surface is in contact with the remaining plasma/artificial CSF mix above the sediment which can be explained by an asymmetric flow profile caused by the sedimentation of erythrocythes having increased viscosity compared to artificial CSF. After removal of blood from artificial CSF, no drift could be observed in the transducer measurement which could be associated to a deposition of proteins at the sensitive surface walls of the packaged flow transducer. The flow sensor specification requirement of +-10\% for a flow range between 2 ml/h and 40 ml/h. could be confirmed at test conditions of 37 degrees C.
Resumo:
BACKGROUND: Various reasons exist for so-called bacillus Calmette-Guérin (BCG) failure in patients with non-muscle-invasive urothelial bladder carcinoma (NMIBC). OBJECTIVE: To explore whether urothelial carcinoma of the upper urinary tract (UUT) and/or prostatic urethra may be a cause for BCG failure. DESIGN, SETTING, AND PARTICIPANTS: Retrospective analysis of 110 patients with high-risk NMIBC repeatedly treated with intravesical BCG, diagnosed with disease recurrence, and followed for a median time of 9.1 yr. INTERVENTION: Two or more intravesical BCG induction courses without maintenance. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Primary outcome was pattern of disease recurrence (BCG failure) within the urinary tract categorised into UUT and/or urethral carcinoma (with or without intravesical recurrence), and intravesical recurrence alone. Secondary outcome was survival. Predictors of UUT and/or urethral carcinoma and the effect of pattern of disease recurrence on cancer-specific survival were assessed with multivariable Cox regression analysis adjusting for multiple clinical and tumour characteristics. RESULTS AND LIMITATIONS: Of the 110 patients, 57 (52%) had UUT and/or urethral carcinoma (with or without intravesical recurrence), and 53 (48%) had intravesical recurrence alone. In patients with UUT and/or urethral carcinoma, bladder carcinoma in situ (Tis) before the first and second BCG course was present in 42 of 57 (74%) and 47 of 57 (82%) patients, respectively. On multivariable analysis, bladder Tis before the first and/or second BCG course was the only independent predictor of UUT and/or urethral carcinoma. Of the 110 patients, 69 (63%) were alive at last follow-up visit, 18 (16%) had died due to metastatic urothelial carcinoma, and 23 (21%) had died of other causes. Pattern of disease recurrence within the urinary tract was not an independent predictor of cancer-specific survival. Main study limitations were retrospective design and limited power for survival analysis. CONCLUSIONS: In our patients with high-risk NMIBC failing after two or more courses of intravesical BCG, UUT and/or urethral carcinoma was detected in >50% of the cases during follow-up. The vast majority of these patients had bladder Tis before the first and/or second BCG course. In patients experiencing the so-called BCG failure, a diagnostic work-up of UUT and prostatic urethra should always be performed to exclude urothelial carcinoma before additional intravesical therapy or even a radical cystectomy is considered.
Resumo:
As the complexity of active medical implants increases, the task of embedding a life-long power supply at the time of implantation becomes more challenging. A periodic renewal of the energy source is often required. Human energy harvesting is, therefore, seen as a possible remedy. In this paper, we present a novel idea to harvest energy from the pressure-driven deformation of an artery by the principle of magneto-hydrodynamics. The generator relies on a highly electrically conductive fluid accelerated perpendicularly to a magnetic field by means of an efficient lever arm mechanism. An artery with 10 mm inner diameter is chosen as a potential implantation site and its ability to drive the generator is established. Three analytical models are proposed to investigate the relevant design parameters and to determine the existence of an optimal configuration. The predicted output power reaches 65 μW according to the first two models and 135 μW according to the third model. It is found that the generator, designed as a circular structure encompassing the artery, should not exceed a total volume of 3 cm3.
Resumo:
Human energy harvesting is envisioned as a remedy to the weight, the size, and the poor energy density of primary batteries in medical implants. The first implant to have necessarily raised the idea of a biological power supply was the pacemaker in the early 1960s. So far, review articles on human energy harvesting have been rather unspecific and no tribute has been given to the early role of the pacemaker and the cardiovascular system in triggering research in the field. The purpose of the present article is to provide an up-to-date review of research efforts targeting the cardiovascular system as an alternative energy source for active medical implants. To this end, a chronological survey of the last 14 most influential publications is proposed. They include experimental and/or theoretical studies based on electromagnetic, piezoelectric, or electrostatic transducers harnessing various forms of energy, such as heart motion, pressure gradients, and blood flow. Technical feasibility does not imply clinical applicability: although most of the reported devices were shown to harvest an interesting amount of energy from a physiological environment, none of them were tested in vivo for a longer period of time.Human energy harvesting is envisioned as a remedy to the weight, the size, and the poor energy density of primary batteries in medical implants. The first implant to have necessarily raised the idea of a biological power supply was the pacemaker in the early 1960s. So far, review articles on human energy harvesting have been rather unspecific and no tribute has been given to the early role of the pacemaker and the cardiovascular system in triggering research in the field. The purpose of the present article is to provide an up-to-date review of research efforts targeting the cardiovascular system as an alternative energy source for active medical implants. To this end, a chronological survey of the last 14 most influential publications is proposed. They include experimental and/or theoretical studies based on electromagnetic, piezoelectric, or electrostatic transducers harnessing various forms of energy, such as heart motion, pressure gradients, and blood flow. Technical feasibility does not imply clinical applicability: although most of the reported devices were shown to harvest an interesting amount of energy from a physiological environment, none of them were tested in vivo for a longer period of time.
Effect of sibling competition and male carotenoid supply on offspring condition and oxidative stress
Resumo:
Early developmental conditions have major implications for an individual's fitness. In species where offspring are born simultaneously, the level of sibling competition for food access is intense. In birds, high sibling competition may subject nestlings to decreased growth rate as a result of limited food and increased levels of oxidative stress through high metabolic activity induced by begging behaviors. We manipulated the level of sibling competition in a natural population of great tits and assessed the consequences for nestling body condition and resistance to oxidative stress. In a full factorial design, we both augmented brood size to increase sibling competition and supplemented the male parents with physiological doses of carotenoids thereby doubling the natural carotenoid intake, aiming at increasing the males' investment in current reproduction and thereby decreasing sibling competition. Nestling body mass was reduced by the brood enlargement and enhanced by the carotenoid supplementation of fathers. Nestling resistance to oxidative stress, measured as total antioxidant defenses in whole blood, was not influenced by the treatments. Because nestlings experience high metabolic activities, an absence of an effect of sibling competition on free radicals production seems unlikely. Nestling body mass decreased and resistance to oxidative stress tended to increase with initial brood size, and hence these correlational effects suggest a trade-off between morphological growth and development of the antioxidant system. However, the result of the experimental treatment did not support this trade-off hypothesis. Alternatively, it suggests that nestling developed compensatory mechanisms that were not detected by our antioxidant capacity measure.
Resumo:
PURPOSE: To retrospectively determine the sensitivity of ovarian artery (OA) visualization at aortography performed after uterine fibroid embolization (UFE) and, using OA arteriography as the reference standard, compare the extent of arterial flow to the uterus at aortography with selective ovarian arteriography, to establish the utility of aortography and ovarian arteriography in the routine practice of UFE. MATERIALS AND METHODS: This study received institutional review board approval with waiver of informed consent and was HIPAA compliant. Retrospective review of 1129 consecutive UFE patients (1072 with aortograms, 57 excluded; mean age, 44 years; range, 21-60 years) was performed to identify all visible OAs. Visible OAs were independently graded by two interventional radiologists according to extent of pelvic arterial flow. If selective arteriography was performed, a second grade was assigned based on assessment of the selective study. Descriptive and summary statistics were used for assessment by the senior observer, and interobserver variability was determined. RESULTS: Of 1072 UFE patients, 184 (17.2%) had at least one visible OA. Ten (0.8%) patients were identified at aortography with collateral OA supply to more than 10% of the uterus. In total, 251 OAs were visualized, and 157 of these were further evaluated with selective study. Sixty-two (5.8%) patients were identified at selective arteriography as having collateral OA supply. The sensitivity of aortography was approximately 18%. Interobserver concordance was high (kappa values of 0.81 and 0.90 for aortography and selective study, respectively), but not perfect. CONCLUSION: Aortography rarely helps identify patients with substantial residual OA supply to the uterus and is a poor predictor of the extent of that supply, and thus may be of limited utility in routine UFE.
Resumo:
Bone-anchored hearing implants (BAHI) are routinely used to alleviate the effects of the acoustic head shadow in single-sided sensorineural deafness (SSD). In this study, the influence of the directional microphone setting and the maximum power output of the BAHI sound processor on speech understanding in noise in a laboratory setting were investigated. Eight adult BAHI users with SSD participated in this pilot study. Speech understanding in noise was measured using a new Slovak speech-in-noise test in two different spatial settings, either with noise coming from the front and noise from the side of the BAHI (S90N0) or vice versa (S0N90). In both spatial settings, speech understanding was measured without a BAHI, with a Baha BP100 in omnidirectional mode, with a BP100 in directional mode, with a BP110 power in omnidirectional and with a BP110 power in directional mode. In spatial setting S90N0, speech understanding in noise with either sound processor and in either directional mode was improved by 2.2-2.8 dB (p = 0.004-0.016). In spatial setting S0N90, speech understanding in noise was reduced by either BAHI, but was significantly better by 1.0-1.8 dB, if the directional microphone system was activated (p = 0.046), when compared to the omnidirectional setting. With the limited number of subjects in this study, no statistically significant differences were found between the two sound processors.
Resumo:
In the 1980s, leukaemia clusters were discovered around nuclear fuel reprocessing plants in Sellafield and Dounreay in the United Kingdom. This raised public concern about the risk of childhood leukaemia near nuclear power plants (NPPs). Since then, the topic has been well-studied, but methodological limitations make results difficult to interpret. Our review aims to: (1.) summarise current evidence on the relationship between NPPs and risk of childhood leukaemia, with a focus on the Swiss CANUPIS (Childhood cancer and nuclear power plants in Switzerland) study; (2.) discuss the limitations of previous research; and (3.) suggest directions for future research. There are various reasons that previous studies produced inconclusive results. These include: inadequate study designs and limited statistical power due to the low prevalence of exposure (living near a NPP) and outcome (leukaemia); lack of accurate exposure estimates; limited knowledge of the aetiology of childhood leukaemia, particularly of vulnerable time windows and latent periods; use of residential location at time of diagnosis only and lack of data on address histories; and inability to adjust for potential confounders. We conclude that risk of childhood leukaemia around NPPs should continue to be monitored and that study designs should be improved and standardised. Data should be pooled internationally to increase the statistical power. More research needs to be done on other putative risk factors for childhood cancer such as low-dose ionizing radiation, exposure to certain chemicals and exposure to infections. Studies should be designed to allow examining multiple exposures.
Resumo:
AIMS Today's cardiac pacemakers are powered by batteries with limited energy capacity. As the battery's lifetime ends, the pacemaker needs to be replaced. This surgical re-intervention is costly and bears the risk of complications. Thus, a pacemaker without primary batteries is desirable. The goal of this study was to test whether transcutaneous solar light could power a pacemaker. METHODS AND RESULTS We used a three-step approach to investigate the feasibility of sunlight-powered cardiac pacing. First, the harvestable power was estimated. Theoretically, a subcutaneously implanted 1 cm(2) solar module may harvest ∼2500 µW from sunlight (3 mm implantation depth). Secondly, ex vivo measurements were performed with solar cells placed under pig skin flaps exposed to a solar simulator and real sunlight. Ex vivo measurements under real sunlight resulted in a median output power of 4941 µW/cm(2) [interquartile range (IQR) 3767-5598 µW/cm(2), median skin flap thickness 3.0 mm (IQR 2.7-3.3 mm)]. The output power strongly depended on implantation depth (ρSpearman = -0.86, P < 0.001). Finally, a batteryless single-chamber pacemaker powered by a 3.24 cm(2) solar module was implanted in vivo in a pig to measure output power and to pace. In vivo measurements showed a median output power of >3500 µW/cm(2) (skin flap thickness 2.8-3.84 mm). Successful batteryless VVI pacing using a subcutaneously implanted solar module was performed. CONCLUSION Based on our results, we estimate that a few minutes of direct sunlight (irradiating an implanted solar module) allow powering a pacemaker for 24 h using a suitable energy storage. Thus, powering a pacemaker by sunlight is feasible and may be an alternative energy supply for tomorrow's pacemakers.
Resumo:
In the ectomycorrhizal caesalpiniaceous groves of southern Korup National Park, the dominant tree species, Microberlinia bisulcata, displays very poor in situ recruitment compared with its codominant, Tetraberlinia bifoliolata. The reported ex situ experiment tested whether availabilities of soil potassium and magnesium play a role. Seedlings of the two species received applications of K and Mg fertilizer in potted native soil in a local shade house, and their responses in terms of growth and nutrient concentrations were recorded over 2 years. Amended soil concentrations were also determined. Microberlinia responded strongly and positively in its growth to Mg, but less to K; Tetraberlinia responded weakly to both. Added Mg led to strongly increased Mg concentration for Microberlinia while added K changed that concentration only slightly; Tetraberlinia strongly increased its concentration of K with added K, but only somewhat its Mg concentration with added Mg. Additions of Mg and K had small but important antagonistic effects. Microberlinia is Mg-demanding and apparently Mg-limited in Korup soil; Tetraberlinia, whilst K-demanding, appeared not to be K-limited (for growth). Added K enhanced plant P concentrations of both species. Extra applied Mg may also be alleviating soil aluminum toxicity, and hence improving growth indirectly and especially to the benefit of Microberlinia. Mg appears to be essential for Microberlinia seedling growth and its low soil availability in grove soils at Korup may be an important contributing factor to its poor recruitment. Microberlinia is highly shade-intolerant and strongly light-responding, whilst Tetraberlinia is more shade-tolerant and moderately light-responding, which affords an interesting contrast with respect to their differing responses to Mg supply. The study revealed novel aspects of functional traits and likely niche-partitioning among ectomycorrhizal caesalps in African rain forests. Identifying the direct and interacting indirect effects of essential elements on tropical tree seedling growth presents a considerable challenge due the complex nexus of causes involved.