19 resultados para Ligand-steered Modeling Method
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Signal proteins are able to adapt their response to a change in the environment, governing in this way a broad variety of important cellular processes in living systems. While conventional molecular-dynamics (MD) techniques can be used to explore the early signaling pathway of these protein systems at atomistic resolution, the high computational costs limit their usefulness for the elucidation of the multiscale transduction dynamics of most signaling processes, occurring on experimental timescales. To cope with the problem, we present in this paper a novel multiscale-modeling method, based on a combination of the kinetic Monte-Carlo- and MD-technique, and demonstrate its suitability for investigating the signaling behavior of the photoswitch light-oxygen-voltage-2-Jα domain from Avena Sativa (AsLOV2-Jα) and an AsLOV2-Jα-regulated photoactivable Rac1-GTPase (PA-Rac1), recently employed to control the motility of cancer cells through light stimulus. More specifically, we show that their signaling pathways begin with a residual re-arrangement and subsequent H-bond formation of amino acids near to the flavin-mononucleotide chromophore, causing a coupling between β-strands and subsequent detachment of a peripheral α-helix from the AsLOV2-domain. In the case of the PA-Rac1 system we find that this latter process induces the release of the AsLOV2-inhibitor from the switchII-activation site of the GTPase, enabling signal activation through effector-protein binding. These applications demonstrate that our approach reliably reproduces the signaling pathways of complex signal proteins, ranging from nanoseconds up to seconds at affordable computational costs.
Resumo:
W5.43(194), a conserved tryptophan residue among G-protein coupled receptors (GPCRs) and cannabinoid receptors (CB), was examined in the present report for its significance in CB2 receptor ligand binding and adenylyl cyclase (AC) activity. Computer modeling postulates that this site in CB2 may be involved in the affinity of WIN55212-2 and SR144528 through aromatic contacts. In the present study, we reported that a CB2 receptor mutant, W5.43(194)Y, which had a tyrosine (Y) substitution for tryptophan (W), retained the binding affinity for CB agonist CP55940, but reduced binding affinity for CB2 agonist WIN55212-2 and inverse agonist SR144528 by 8-fold and 5-fold, respectively; the CB2 W5.43(194)F and W5.43(194)A mutations significantly affect the binding activities of CP55940, WIN55212-2 and SR144528. Furthermore, we found that agonist-mediated inhibition of the forskolin-induced cAMP production was dramatically diminished in the CB2 mutant W5.43(194)Y, whereas W5.43(194)F and W5.43(194)A mutants resulted in complete elimination of downstream signaling, suggesting that W5.43(194) was essential for the full activation of CB2. These results indicate that both aromatic interaction and hydrogen bonding are involved in ligand binding for the residue W5.43(194), and the mutations of this tryptophan site may affect the conformation of the ligand binding pocket and therefore control the active conformation of the wild type CB2 receptor. W5.43(194)Y/F/A mutations also displayed noticeable enhancement of the constitutive activation probably attributed to the receptor conformational changes resulted from the mutations.
Resumo:
Herein, we report the discovery of the first potent and selective inhibitor of TRPV6, a calcium channel overexpressed in breast and prostate cancer, and its use to test the effect of blocking TRPV6-mediated Ca2+-influx on cell growth. The inhibitor was discovered through a computational method, xLOS, a 3D-shape and pharmacophore similarity algorithm, a type of ligand-based virtual screening (LBVS) method described briefly here. Starting with a single weakly active seed molecule, two successive rounds of LBVS followed by optimization by chemical synthesis led to a selective molecule with 0.3 μM inhibition of TRPV6. The ability of xLOS to identify different scaffolds early in LBVS was essential to success. The xLOS method may be generally useful to develop tool compounds for poorly characterized targets.
Resumo:
Statistical shape models (SSMs) have been used widely as a basis for segmenting and interpreting complex anatomical structures. The robustness of these models are sensitive to the registration procedures, i.e., establishment of a dense correspondence across a training data set. In this work, two SSMs based on the same training data set of scoliotic vertebrae, and registration procedures were compared. The first model was constructed based on the original binary masks without applying any image pre- and post-processing, and the second was obtained by means of a feature preserving smoothing method applied to the original training data set, followed by a standard rasterization algorithm. The accuracies of the correspondences were assessed quantitatively by means of the maximum of the mean minimum distance (MMMD) and Hausdorf distance (H(D)). Anatomical validity of the models were quantified by means of three different criteria, i.e., compactness, specificity, and model generalization ability. The objective of this study was to compare quasi-identical models based on standard metrics. Preliminary results suggest that the MMMD distance and eigenvalues are not sensitive metrics for evaluating the performance and robustness of SSMs.
Resumo:
Image-based modeling of tumor growth combines methods from cancer simulation and medical imaging. In this context, we present a novel approach to adapt a healthy brain atlas to MR images of tumor patients. In order to establish correspondence between a healthy atlas and a pathologic patient image, tumor growth modeling in combination with registration algorithms is employed. In a first step, the tumor is grown in the atlas based on a new multi-scale, multi-physics model including growth simulation from the cellular level up to the biomechanical level, accounting for cell proliferation and tissue deformations. Large-scale deformations are handled with an Eulerian approach for finite element computations, which can operate directly on the image voxel mesh. Subsequently, dense correspondence between the modified atlas and patient image is established using nonrigid registration. The method offers opportunities in atlasbased segmentation of tumor-bearing brain images as well as for improved patient-specific simulation and prognosis of tumor progression.
Resumo:
A feature represents a functional requirement fulfilled by a system. Since many maintenance tasks are expressed in terms of features, it is important to establish the correspondence between a feature and its implementation in source code. Traditional approaches to establish this correspondence exercise features to generate a trace of runtime events, which is then processed by post-mortem analysis. These approaches typically generate large amounts of data to analyze. Due to their static nature, these approaches do not support incremental and interactive analysis of features. We propose a radically different approach called live feature analysis, which provides a model at runtime of features. Our approach analyzes features on a running system and also makes it possible to grow feature representations by exercising different scenarios of the same feature, and identifies execution elements even to the sub-method level. We describe how live feature analysis is implemented effectively by annotating structural representations of code based on abstract syntax trees. We illustrate our live analysis with a case study where we achieve a more complete feature representation by exercising and merging variants of feature behavior and demonstrate the efficiency or our technique with benchmarks.
Resumo:
The hERG voltage-gated potassium channel mediates the cardiac I(Kr) current, which is crucial for the duration of the cardiac action potential. Undesired block of the channel by certain drugs may prolong the QT interval and increase the risk of malignant ventricular arrhythmias. Although the molecular determinants of hERG block have been intensively studied, not much is known about its stereoselectivity. Levo-(S)-bupivacaine was the first drug reported to have a higher affinity to block hERG than its enantiomer. This study strives to understand the principles underlying the stereoselectivity of bupivacaine block with the help of mutagenesis analyses and molecular modeling simulations. Electrophysiological measurements of mutated hERG channels allowed for the identification of residues involved in bupivacaine binding and stereoselectivity. Docking and molecular mechanics simulations for both enantiomers of bupivacaine and terfenadine (a non-stereoselective blocker) were performed inside an open-state model of the hERG channel. The predicted binding modes enabled a clear depiction of ligand-protein interactions. Estimated binding affinities for both enantiomers were consistent with electrophysiological measurements. A similar computational procedure was applied to bupivacaine enantiomers towards two mutated hERG channels (Tyr652Ala and Phe656Ala). This study confirmed, at the molecular level, that bupivacaine stereoselectively binds the hERG channel. These results help to lay the foundation for structural guidelines to optimize the cardiotoxic profile of drug candidates in silico.
Resumo:
Ocular anatomy and radiation-associated toxicities provide unique challenges for external beam radiation therapy. For treatment planning, precise modeling of organs at risk and tumor volume are crucial. Development of a precise eye model and automatic adaptation of this model to patients' anatomy remain problematic because of organ shape variability. This work introduces the application of a 3-dimensional (3D) statistical shape model as a novel method for precise eye modeling for external beam radiation therapy of intraocular tumors.
Resumo:
High levels of glucagon-like peptide-1 (GLP-1) receptor expression in human insulinomas and gastrinomas provide an attractive target for imaging, therapy, and intraoperative tumor localization, using receptor-avid radioligands. The goal of this study was to establish a tumor model for GLP-1 receptor targeting and to use a newly designed exendin-4-DTPA (DTPA is diethylenetriaminepentaacetic acid) conjugate for GLP-1 receptor targeting. METHODS: Exendin-4 was modified C-terminally with Lys(40)-NH(2), whereby the lysine side chain was conjugated with Ahx-DTPA (Ahx is aminohexanoic acid). The GLP-1 receptor affinity (50% inhibitory concentration [IC(50)] value) of [Lys(40)(Ahx-DTPA)NH(2)]exendin-4 as well as the GLP-1 receptor density in tumors and different organs of Rip1Tag2 mice were determined. Rip1Tag2 mice are transgenic mice that develop insulinomas in a well-defined multistage tumorigenesis pathway. This animal model was used for biodistribution studies, pinhole SPECT/MRI, and SPECT/CT. Peptide stability, internalization, and efflux studies were performed in cultured beta-tumor cells established from tumors of Rip1Tag2 mice. RESULTS: The GLP-1 receptor affinity of [Lys(40)(Ahx-DTPA)NH(2)]exendin-4 was found to be 2.1 +/- 1.1 nmol/L (mean +/- SEM). Because the GLP-1 receptor density in tumors of Rip1Tag2 mice was very high, a remarkably high tumor uptake of 287 +/- 62 %IA/g (% injected activity per gram tissue) was found 4 h after injection. This resulted in excellent tumor visualization by pinhole SPECT/MRI and SPECT/CT. In accordance with in vitro data, [Lys(40)(Ahx-DTPA-(111)In)NH(2)]exendin-4 uptake in Rip1Tag2 mice was also found in nonneoplastic tissues such as pancreas and lung. However, lung and pancreas uptake was distinctly lower compared with that of tumors, resulting in a tumor-to-pancreas ratio of 13.6 and in a tumor-to-lung ratio of 4.4 at 4 h after injection. Furthermore, in vitro studies in cultured beta-tumor cells demonstrated a specific internalization of [Lys(40)(Ahx-DTPA-(111)In)NH(2)]exendin-4, whereas peptide stability studies indicated a high metabolic stability of the radiopeptide in beta-tumor cells and human blood serum. CONCLUSION: The high density of GLP-1 receptors in insulinomas as well as the high specific uptake of [Lys(40)(Ahx-DTPA-(111)In)NH(2)]exendin-4 in the tumor of Rip1Tag2 mice indicate that targeting of GLP-1 receptors in insulinomas may become a useful imaging method to localize insulinomas in patients, either preoperatively or intraoperatively. In addition, Rip1Tag2 transgenic mice represent a suitable animal tumor model for GLP-1 receptor targeting.
Resumo:
11beta-Hydroxysteroid dehydrogenase (11beta-HSD) enzymes catalyze the conversion of biologically inactive 11-ketosteroids into their active 11beta-hydroxy derivatives and vice versa. Inhibition of 11beta-HSD1 has considerable therapeutic potential for glucocorticoid-associated diseases including obesity, diabetes, wound healing, and muscle atrophy. Because inhibition of related enzymes such as 11beta-HSD2 and 17beta-HSDs causes sodium retention and hypertension or interferes with sex steroid hormone metabolism, respectively, highly selective 11beta-HSD1 inhibitors are required for successful therapy. Here, we employed the software package Catalyst to develop ligand-based multifeature pharmacophore models for 11beta-HSD1 inhibitors. Virtual screening experiments and subsequent in vitro evaluation of promising hits revealed several selective inhibitors. Efficient inhibition of recombinant human 11beta-HSD1 in intact transfected cells as well as endogenous enzyme in mouse 3T3-L1 adipocytes and C2C12 myotubes was demonstrated for compound 27, which was able to block subsequent cortisol-dependent activation of glucocorticoid receptors with only minor direct effects on the receptor itself. Our results suggest that inhibitor-based pharmacophore models for 11beta-HSD1 in combination with suitable cell-based activity assays, including such for related enzymes, can be used for the identification of selective and potent inhibitors.
Resumo:
High-resolution and highly precise age models for recent lake sediments (last 100–150 years) are essential for quantitative paleoclimate research. These are particularly important for sedimentological and geochemical proxies, where transfer functions cannot be established and calibration must be based upon the relation of sedimentary records to instrumental data. High-precision dating for the calibration period is most critical as it determines directly the quality of the calibration statistics. Here, as an example, we compare radionuclide age models obtained on two high-elevation glacial lakes in the Central Chilean Andes (Laguna Negra: 33°38′S/70°08′W, 2,680 m a.s.l. and Laguna El Ocho: 34°02′S/70°19′W, 3,250 m a.s.l.). We show the different numerical models that produce accurate age-depth chronologies based on 210Pb profiles, and we explain how to obtain reduced age-error bars at the bottom part of the profiles, i.e., typically around the end of the 19th century. In order to constrain the age models, we propose a method with five steps: (i) sampling at irregularly-spaced intervals for 226Ra, 210Pb and 137Cs depending on the stratigraphy and microfacies, (ii) a systematic comparison of numerical models for the calculation of 210Pb-based age models: constant flux constant sedimentation (CFCS), constant initial concentration (CIC), constant rate of supply (CRS) and sediment isotope tomography (SIT), (iii) numerical constraining of the CRS and SIT models with the 137Cs chronomarker of AD 1964 and, (iv) step-wise cross-validation with independent diagnostic environmental stratigraphic markers of known age (e.g., volcanic ash layer, historical flood and earthquakes). In both examples, we also use airborne pollutants such as spheroidal carbonaceous particles (reflecting the history of fossil fuel emissions), excess atmospheric Cu deposition (reflecting the production history of a large local Cu mine), and turbidites related to historical earthquakes. Our results show that the SIT model constrained with the 137Cs AD 1964 peak performs best over the entire chronological profile (last 100–150 years) and yields the smallest standard deviations for the sediment ages. Such precision is critical for the calibration statistics, and ultimately, for the quality of the quantitative paleoclimate reconstruction. The systematic comparison of CRS and SIT models also helps to validate the robustness of the chronologies in different sections of the profile. Although surprisingly poorly known and under-explored in paleolimnological research, the SIT model has a great potential in paleoclimatological reconstructions based on lake sediments
Resumo:
In terms of atmospheric impact, the volcanic eruption of Mt. Pinatubo (1991) is the best characterized large eruption on record. We investigate here the model-derived stratospheric warming following the Pinatubo eruption as derived from SAGE II extinction data including recent improvements in the processing algorithm. This method, termed SAGE_4λ, makes use of the four wavelengths (385, 452, 525 and 1024 nm) of the SAGE II data when available, and uses a data-filling procedure in the opacity-induced "gap" regions. Using SAGE_4λ, we derived aerosol size distributions that properly reproduce extinction coefficients also at much longer wavelengths. This provides a good basis for calculating the absorption of terrestrial infrared radiation and the resulting stratospheric heating. However, we also show that the use of this data set in a global chemistry–climate model (CCM) still leads to stronger aerosol-induced stratospheric heating than observed, with temperatures partly even higher than the already too high values found by many models in recent general circulation model (GCM) and CCM intercomparisons. This suggests that the overestimation of the stratospheric warming after the Pinatubo eruption may not be ascribed to an insufficient observational database but instead to using outdated data sets, to deficiencies in the implementation of the forcing data, or to radiative or dynamical model artifacts. Conversely, the SAGE_4λ approach reduces the infrared absorption in the tropical tropopause region, resulting in a significantly better agreement with the post-volcanic temperature record at these altitudes.
Resumo:
Consecrated in 1297 as the monastery church of the four years earlier founded St. Catherine’s monastery, the Gothic Church of St. Catherine was largely destroyed in a devastating bombing raid on January 2nd 1945. To counteract the process of disintegration, the departments of geo-information and lower monument protection authority of the City of Nuremburg decided to getting done a three dimensional building model of the Church of St. Catherine’s. A heterogeneous set of data was used for preparation of a parametric architectural model. In effect the modeling of historic buildings can profit from the so called BIM method (Building Information Modeling), as the necessary structuring of the basic data renders it into very sustainable information. The resulting model is perfectly suited to deliver a vivid impression of the interior and exterior of this former mendicant orders’ church to present observers.
Resumo:
Objective: Processes occurring in the course of psychotherapy are characterized by the simple fact that they unfold in time and that the multiple factors engaged in change processes vary highly between individuals (idiographic phenomena). Previous research, however, has neglected the temporal perspective by its traditional focus on static phenomena, which were mainly assessed at the group level (nomothetic phenomena). To support a temporal approach, the authors introduce time-series panel analysis (TSPA), a statistical methodology explicitly focusing on the quantification of temporal, session-to-session aspects of change in psychotherapy. TSPA-models are initially built at the level of individuals and are subsequently aggregated at the group level, thus allowing the exploration of prototypical models. Method: TSPA is based on vector auto-regression (VAR), an extension of univariate auto-regression models to multivariate time-series data. The application of TSPA is demonstrated in a sample of 87 outpatient psychotherapy patients who were monitored by postsession questionnaires. Prototypical mechanisms of change were derived from the aggregation of individual multivariate models of psychotherapy process. In a 2nd step, the associations between mechanisms of change (TSPA) and pre- to postsymptom change were explored. Results: TSPA allowed a prototypical process pattern to be identified, where patient's alliance and self-efficacy were linked by a temporal feedback-loop. Furthermore, therapist's stability over time in both mastery and clarification interventions was positively associated with better outcomes. Conclusions: TSPA is a statistical tool that sheds new light on temporal mechanisms of change. Through this approach, clinicians may gain insight into prototypical patterns of change in psychotherapy.
Resumo:
Four different literature parameterizations for the formation and evolution of urban secondary organic aerosol (SOA) frequently used in 3-D models are evaluated using a 0-D box model representing the Los Angeles metropolitan region during the California Research at the Nexus of Air Quality and Climate Change (CalNex) 2010 campaign. We constrain the model predictions with measurements from several platforms and compare predictions with particle- and gas-phase observations from the CalNex Pasadena ground site. That site provides a unique opportunity to study aerosol formation close to anthropogenic emission sources with limited recirculation. The model SOA that formed only from the oxidation of VOCs (V-SOA) is insufficient to explain the observed SOA concentrations, even when using SOA parameterizations with multi-generation oxidation that produce much higher yields than have been observed in chamber experiments, or when increasing yields to their upper limit estimates accounting for recently reported losses of vapors to chamber walls. The Community Multiscale Air Quality (WRF-CMAQ) model (version 5.0.1) provides excellent predictions of secondary inorganic particle species but underestimates the observed SOA mass by a factor of 25 when an older VOC-only parameterization is used, which is consistent with many previous model–measurement comparisons for pre-2007 anthropogenic SOA modules in urban areas. Including SOA from primary semi-volatile and intermediate-volatility organic compounds (P-S/IVOCs) following the parameterizations of Robinson et al. (2007), Grieshop et al. (2009), or Pye and Seinfeld (2010) improves model–measurement agreement for mass concentration. The results from the three parameterizations show large differences (e.g., a factor of 3 in SOA mass) and are not well constrained, underscoring the current uncertainties in this area. Our results strongly suggest that other precursors besides VOCs, such as P-S/IVOCs, are needed to explain the observed SOA concentrations in Pasadena. All the recent parameterizations overpredict urban SOA formation at long photochemical ages (3 days) compared to observations from multiple sites, which can lead to problems in regional and especially global modeling. However, reducing IVOC emissions by one-half in the model to better match recent IVOC measurements improves SOA predictions at these long photochemical ages. Among the explicitly modeled VOCs, the precursor compounds that contribute the greatest SOA mass are methylbenzenes. Measured polycyclic aromatic hydrocarbons (naphthalenes) contribute 0.7% of the modeled SOA mass. The amounts of SOA mass from diesel vehicles, gasoline vehicles, and cooking emissions are estimated to be 16–27, 35–61, and 19–35 %, respectively, depending on the parameterization used, which is consistent with the observed fossil fraction of urban SOA, 71(+-3) %. The relative contribution of each source is uncertain by almost a factor of 2 depending on the parameterization used. In-basin biogenic VOCs are predicted to contribute only a few percent to SOA. A regional SOA background of approximately 2.1 μgm-3 is also present due to the long-distance transport of highly aged OA, likely with a substantial contribution from regional biogenic SOA. The percentage of SOA from diesel vehicle emissions is the same, within the estimated uncertainty, as reported in previous work that analyzed the weekly cycles in OA concentrations (Bahreini et al., 2012; Hayes et al., 2013). However, the modeling work presented here suggests a strong anthropogenic source of modern carbon in SOA, due to cooking emissions, which was not accounted for in those previous studies and which is higher on weekends. Lastly, this work adapts a simple two-parameter model to predict SOA concentration and O/C from urban emissions. This model successfully predicts SOA concentration, and the optimal parameter combination is very similar to that found for Mexico City. This approach provides a computationally inexpensive method for predicting urban SOA in global and climate models. We estimate pollution SOA to account for 26 Tg yr-1 of SOA globally, or 17% of global SOA, one third of which is likely to be non-fossil.