16 resultados para License plates.
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
To assess the long-term clinical and radiologic findings after insertion of a bioresorbable polylactide plates P(L/DL)LA 70/30 implant (PolyMax) in the repair of orbital floor and wall defects, with special focus on stability and clinical signs of foreign-body reaction.
Resumo:
In this paper we present a new population-based method for the design of bone fixation plates. Standard pre-contoured plates are designed based on the mean shape of a certain population. We propose a computational process to design implants while reducing the amount of required intra-operative shaping, thus reducing the mechanical stresses applied to the plate. A bending and torsion model was used to measure and minimize the necessary intra-operative deformation. The method was applied and validated on a population of 200 femurs that was further augmented with a statistical shape model. The obtained results showed substantial reduction in the bending and torsion needed to shape the new design into any bone in the population when compared to the standard mean-based plates.
Resumo:
In this paper we present a new population-based implant design methodology, which advances the state-of-the-art approaches by combining shape and bone quality information into the design strategy. The method enhances the mechanical stability of the fixation and reduces the intra-operative in-plane bending which might impede the functionality of the locking mechanism. The method is presented for the case of mandibular locking fixation plates, where the mandibular angle and the bone quality at screw locations are taken into account. Using computational anatomy techniques, the method automatically derives, from a set of computed tomography images, the mandibular angle and the bone thickness and intensity values at the path of every screw. An optimisation strategy is then used to optimise the two parameters of plate angle and screw position. Results for the new design are presented along with a comparison with a commercially available mandibular locking fixation plate. A statistically highly significant improvement was observed. Our experiments allowed us to conclude that an angle of 126° and a screw separation of 8mm is a more suitable design than the standard 120° and 9mm.
Resumo:
In this paper we present a new population-based implant design methodology, which advances the state-of-the-art approaches by combining shape and bone quality information into the design strategy. The method may enhance the mechanical stability of the fixation and reduces the intra-operative in-plane bending which might impede the functionality of the locking mechanism. The computational method is presented for the case of mandibular locking fixation plates, where the mandibular angle and the bone quality at screw locations are taken into account. The method automatically derives the mandibular angle and the bone thickness and intensity values at the path of every screw from a set of computed tomography images. An optimization strategy is then used to optimize the two parameters of plate angle and screw position. The method was applied to two populations of different genders. Results for the new design are presented along with a comparison with a commercially available mandibular locking fixation plate (MODUS(®) TriLock(®) 2.0/2.3/2.5, Medartis AG, Basel, Switzerland). The proposed designs resulted in a statistically significant improvement in the available bone thickness when compared to the standard plate. There is a higher probability that the proposed implants cover areas of thicker cortical bone without compromising the bone mineral density around the screws. The obtained results allowed us to conclude that an angle and screw separation of 129° and 9 mm for females and 121° and 10 mm for males are more suitable designs than the commercially available 120° and 9 mm.
Resumo:
OBJECTIVES: The aim of the here described case series was to develop and evaluate the minimally invasive percutaneous osteosynthesis for the plate fixation of tibial fractures in dogs and cats. METHODS: Six dogs and four cats with shaft fractures of the tibia were treated using minimally invasive percutaneous osteosynthesis. Follow-up radiographs four to six weeks after fracture fixation were evaluated for fracture healing. For the long-term follow-up (minimum 2.4 years), owners were contacted by phone to complete a questionnaire. RESULTS: All fractures healed without the need for a second procedure. Follow-up radiographs obtained after four to six weeks in seven cases showed advanced bony healing with callus formation and filling of the fracture gaps with calcified tissue in all seven. All the patients had a good to excellent long-term result with full limb function. The time needed for regaining full limb use was two to three months. CLINICAL SIGNIFICANCE: Minimally invasive percutaneous osteosynthesis seems to be a useful technique for the treatment of tibial shaft fractures in dogs and cats.
Resumo:
The Growth/Differentiation Factors (GDFs) are a subgroup of the Bone Morphogenetic Proteins (BMPs) well known for their role in joint formation and chondrogenesis. Mice deficient in one of these signaling molecules, GDF-5, have recently been shown to exhibit a decreased rate of endochondral bone growth in the proximal tibia due to a significantly longer hypertrophic phase duration. GDF-7 is a related family member, which exhibits a high degree of sequence identity with GDF-5. The purpose of the present study was to determine whether GDF-7 deficiency also alters the endochondral bone growth rate in mice and, if so, how this is achieved. Stereologic and cell kinetic parameters in proximal tibial growth plates from 5-week-old female GDF-7 -/- mice and wild type control littermates were examined. GDF-7 deficiency resulted in a statistically significant increase in growth rate (+26%; p = 0.0084) and rate of cell loss at the chondrosseous junction (+25%; p = 0.0217). Cells from GDF-7 deficient mice also exhibited a significantly shorter hypertrophic phase duration compared to wild type controls (-27%; p = 0.0326). These data demonstrate that, in the absence of GDF-7, the rate of endochondral bone growth is affected through the modulation of hypertrophic phase duration in growth plate chondrocytes. These findings further support a growing body of evidence implicating the GDFs in the formation, maturation, and maintenance of healthy cartilage.
Resumo:
The growth/differentiation factors (GDFs) are a subgroup of the bone morphogenetic proteins best known for their role in joint formation and chondrogenesis. Mice deficient in one of these signaling proteins, GDF-5, exhibit numerous skeletal abnormalities, including shortened limb bones. The primary aim of this study was determine whether GDF-5 deficiency would alter the growth rate in growth plates from the long bones in mice and, if so, how this is achieved. Stereologic and cell kinetic parameters in proximal tibial growth plates from 5-week-old female GDF-5 -/- mice and control littermates were examined. GDF-5 deficiency resulted in a statistically significant reduction in growth rate (-14%, p=0.03). The effect of genotype on growth rate was associated with an altered hypertrophic phase duration, with hypertrophic cells from GDF-5 deficient mice exhibiting a significantly longer phase duration compared to control littermates (+25%, p=0.006). These data suggest that one way in which GDF-5 might modulate the rate of endochondral bone growth could be by affecting the duration of the hypertrophic phase in growth plate chondrocytes.
Resumo:
Manual counting of bacterial colony forming units (CFUs) on agar plates is laborious and error-prone. We therefore implemented a colony counting system with a novel segmentation algorithm to discriminate bacterial colonies from blood and other agar plates.A colony counter hardware was designed and a novel segmentation algorithm was written in MATLAB. In brief, pre-processing with Top-Hat-filtering to obtain a uniform background was followed by the segmentation step, during which the colony images were extracted from the blood agar and individual colonies were separated. A Bayes classifier was then applied to count the final number of bacterial colonies as some of the colonies could still be concatenated to form larger groups. To assess accuracy and performance of the colony counter, we tested automated colony counting of different agar plates with known CFU numbers of S. pneumoniae, P. aeruginosa and M. catarrhalis and showed excellent performance.
Resumo:
Procurement of fresh tissue of prostate cancer is critical for biobanking and generation of xenograft models as an important preclinical step towards new therapeutic strategies in advanced prostate cancer. However, handling of fresh radical prostatectomy specimens has been notoriously challenging given the distinctive physical properties of prostate tissue and the difficulty to identify cancer foci on gross examination. Here, we have developed a novel approach using ceramic foam plates for processing freshly cut whole mount sections from radical prostatectomy specimens without compromising further diagnostic assessment. Forty-nine radical prostatectomy specimens were processed and sectioned from the apex to the base in whole mount slices. Putative carcinoma foci were morphologically verified by frozen section analysis. The fresh whole mount slices were then laid between two ceramic foam plates and fixed overnight. To test tissue preservation after this procedure, formalin-fixed and paraffin-embedded whole mount sections were stained with hematoxylin and eosin (H&E) and analyzed by immunohistochemistry, fluorescence, and silver in situ hybridization (FISH and SISH, respectively). There were no morphological artifacts on H&E stained whole mount sections from slices that had been fixed between two plates of ceramic foam, and the histological architecture was fully retained. The quality of immunohistochemistry, FISH, and SISH was excellent. Fixing whole mount tissue slices between ceramic foam plates after frozen section examination is an excellent method for processing fresh radical prostatectomy specimens, allowing for a precise identification and collection of fresh tumor tissue without compromising further diagnostic analysis.
Resumo:
Background Locking compression plates are used in various configurations with lack of detailed information on consequent bone healing. Study design In this in vivo study in sheep 5 different applications of locking compression plate (LCP) were tested using a 45° oblique osteotomy simulating simple fracture pattern. 60 Swiss Alpine sheep where assigned to 5 different groups with 12 sheep each (Group 1: interfragmentary lag screw and an LCP fixed with standard cortex screws as neutralisation plate; Group 2: interfragmentary lag screw and LCP with locking head screws; Group 3: compression plate technique (hybrid construct); Group 4: internal fixator without fracture gap; Group 5: internal fixator with 3 mm gap at the osteotomy site). One half of each group (6 sheep) was monitored for 6 weeks, and the other half (6 sheep) where followed for 12 weeks. Methods X-rays at 3, 6, 9 and 12 weeks were performed to monitor the healing process. After sacrifice operated tibiae were tested biomechanically for nondestructive torsion and compared to the tibia of the healthy opposite side. After testing specimens were processed for microradiography, histology, histomorphometry and assessment of calcium deposition by fluorescence microscopy. Results In all groups bone healing occurred without complications. Stiffness in biomechanical testing showed a tendency for higher values in G2 but results were not statistically significant. Values for G5 were significantly lower after 6 weeks, but after 12 weeks values had improved to comparable results. For all groups, except G3, stiffness values improved between 6 and 12 weeks. Histomorphometrical data demonstrate endosteal callus to be more marked in G2 at 6 weeks. Discussion and conclusion All five configurations resulted in undisturbed bone healing and are considered safe for clinical application.