120 resultados para Leukocyte

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endothelial dysfunction is the initiating event of atherosclerosis. The expression of connexin40 (Cx40), an endothelial gap junction protein, is decreased during atherogenesis. In the present report, we sought to determine whether Cx40 contributes to the development of the disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pentraxins are a superfamily of conserved proteins involved in the acute-phase response and innate immunity. Pentraxin 3 (PTX3), a prototypical member of the long pentraxin subfamily, is a key component of the humoral arm of innate immunity that is essential for resistance to certain pathogens. A regulatory role for pentraxins in inflammation has long been recognized, but the underlying mechanisms remain unclear. Here we report that PTX3 bound P-selectin and attenuated neutrophil recruitment at sites of inflammation. PTX3 released from activated leukocytes functioned locally to dampen neutrophil recruitment and regulate inflammation. Antibodies have glycosylation-dependent regulatory effect on inflammation. Therefore, PTX3, which is an essential component of humoral innate immunity, and immunoglobulins share functional outputs, including complement activation, opsonization and, as shown here, glycosylation-dependent regulation of inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surgical repair of the rotator cuff repair is one of the most common procedures in orthopedic surgery. Despite it being the focus of much research, the physiological tendon-bone insertion is not recreated following repair and there is an anatomic non-healing rate of up to 94%. During the healing phase, several growth factors are upregulated that induce cellular proliferation and matrix deposition. Subsequently, this provisional matrix is replaced by the definitive matrix. Leukocyte- and platelet-rich fibrin (L-PRF) contain growth factors and has a stable dense fibrin matrix. Therefore, use of LPRF in rotator cuff repair is theoretically attractive. The aim of the present study was to determine 1) the optimal protocol to achieve the highest leukocyte content; 2) whether L-PRF releases growth factors in a sustained manner over 28 days; 3) whether standard/gelatinous or dry/compressed matrix preparation methods result in higher growth factor concentrations. 1) The standard L-PRF centrifugation protocol with 400 x g showed the highest concentration of platelets and leukocytes. 2) The L-PRF clots cultured in medium showed a continuous slow release with an increase in the absolute release of growth factors TGF-β1, VEGF and MPO in the first 7 days, and for IGF1, PDGF-AB and platelet activity (PF4=CXCL4) in the first 8 hours, followed by a decrease to close to zero at 28 days. Significantly higher levels of growth factor were expressed relative to the control values of normal blood at each culture time point. 3) Except for MPO and the TGFβ-1, there was always a tendency towards higher release of growth factors (i.e., CXCL4, IGF-1, PDGF-AB, and VEGF) in the standard/gelatinous- compared to the dry/compressed group. L-PRF in its optimal standard/gelatinous-type matrix can store and deliver locally specific healing growth factors for up to 28 days and may be a useful adjunct in rotator cuff repair.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pre-treatment of tumour neovessels by low-level photodynamic therapy (PDT) improves the distribution of concomitantly administered systemic chemotherapy. The mechanism by which PDT permeabilizes the tumour vessel wall is only partially known. We have recently shown that leukocyte-endothelial cell interaction is essential for photodynamic drug delivery to normal tissue. The present study investigates whether PDT enhances drug delivery in malignant mesothelioma and whether it involves comparable mechanisms of actions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent publications have shown that certain human leukocyte antigen (HLA) alleles are strongly associated with hypersensitivity to particular drugs. As HLA molecules are a critical element in T-cell stimulation, it is no surprise that particular HLA alleles have a direct functional role in the pathogenesis of drug hypersensitivity. In this context, a direct interaction of the relevant drug with HLA molecules as described by the p-i concept appears to be more relevant than presentation of hapten-modified peptides. In some HLA-associated drug hypersensitivity reactions, the presence of a risk allele is a necessary but incomplete factor for disease development. In carbamazepine and HLA-B*15:02, certain T-cell receptor (TCR) repertoires are required for immune activation. This additional requirement may be one of the 'missing links' in explaining why most individuals carrying this allele can tolerate the drug. In contrast, abacavir generates polyclonal T-cell response by interacting specifically with HLA-B*57:01 molecules. T cell stimulation may be due to presentation of abacavir or of altered peptides. While the presence of HLA-B*58:01 allele substantially increases the risk of allopurinol hypersensitivity, it is not an absolute requirement, suggesting that other factors also play an important role. In summary, drug hypersensitivity is the end result of a drug interaction with certain HLA molecules and TCRs, the sum of which determines whether the ensuing immune response is going to be harmful or not.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The intracellular protozoan parasites Theileria parva and T. annulata transform the cells they infect, inducing uncontrolled proliferation. This is not a trivial event as, in addition to permanently switching on the complex pathways that govern all steps of the cell cycle, the built-in apoptotic safety mechanisms that prevent 'illegitimate' cell replication also need to be inactivated. Recent experiments show that the NF-kappa B and phosphoinositide 3-kinase (PtdIns-3K) pathways are important participants in the transformation process. I kappa B kinase (IKK), a pivotal kinase complex in the NF-kappa B pathway, is recruited to the parasite surface where it becomes activated. The PtdIns-3K/Akt/PKB pathway is also constitutively activated in a parasite-dependent manner, but contrary to IKK, activation is probably not triggered by direct association with the parasite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of somatic cell count (SCC) and milk fraction on milk composition, distribution of cell populations, and mRNA expression of various inflammatory parameters was studied. Therefore, quarter milk samples were defined as cisternal (C), first 400 g of alveolar (A1), and remaining alveolar milk (A2) during the course of milking. Quarters were assigned to 4 groups according to their total SCC: 1) <12 x 10(3)/mL, 2) 12 to 100 x 10(3)/mL, 3) 100 to 350 x 10(3)/mL, and 4) >350 x 10(3)/mL. Milk constituents of interest were SCC, fat, protein, lactose sodium, and chloride ions as well as electrical conductivity. Cell populations were classified into lymphocytes, macrophages, and neutrophils (PMN). The mRNA expression of the inflammatory factors tumor necrosis factor-alpha, interleukin-1beta, cyclooxygenase-2, lactoferrin, and lysozyme was measured via real-time, quantitative reverse transcription PCR. Somatic cell count decreased from highest levels in C to lowest levels in A1 and increased thereafter to A2 in all groups. Fat content increased from C to A2 and with increasing SCC level. Lactose decreased with increasing SCC level but remained unchanged during milking. Concentrations of sodium and chloride, and electrical conductivity increased with increasing SCC but were higher in C than in A1 and A2. Protein was not affected by milk fraction or SCC level. The distribution of leukocytes was dramatically influenced by milk fraction and SCC. Lymphocytes were the dominating cell population in group 1, but the proportion of lymphocytes was low in groups 2, 3, and 4. Macrophage proportion was highest in group 2 and decreased in groups 3 and 4, whereas that of PMN increased from group 2 to 4. The content of macrophages decreased during milking in all SCC groups whereas that of PMN increased. The proportion of lymphocytes was not affected by milk fraction. The mRNA expression of all inflammatory factors showed an increase with increasing SCC but minor changes occurred during milking. In conclusion, milk fraction and SCC level have a crucial influence on the distribution of leukocyte populations and several milk constituents. The surprisingly high content of lymphocytes and concomitantly low mRNA expression of inflammatory factors in quarters with SCC <12 x 10(3)/mL indicates a different and possibly reduced readiness of the immune system to respond to invading pathogens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leukocyte-platelet interaction is important in mediating leukocyte adhesion to a thrombus and leukocyte recruitment to a site of vascular injury. This interaction is mediated at least in part by the beta2-integrin Mac-1 (CD11b/CD18) and its counter-receptor on platelets, glycoprotein Ibalpha (GPIbalpha). High molecular weight kininogen (HK) was previously shown to interact with both GPIbalpha and Mac-1 through its domains 3 and 5, respectively. In this study we investigated the ability of HK to interfere with the leukocyte-platelet interaction. In a purified system, HK binding to GPIbalpha was inhibited by HK domain 3 and the monoclonal antibody (mAb) SZ2, directed against the epitope 269-282 of GPIbalpha, whereas mAb AP1, directed to the region 201-268 of GPIbalpha had no effect. In contrast, mAb AP1 inhibited the Mac-1-GPIbalpha interaction. Binding of GPIbalpha to Mac-1 was enhanced 2-fold by HK. This effect of HK was abrogated in the presence of HK domains 3 or 5 or peptides from the 475-497 region of the carboxyl terminus of domain 5 as well as in the presence of mAb SZ2 but not mAb AP1. Whereas no difference in the affinity of the Mac-1-GPIbalpha interaction was observed in the absence or presence of HK, maximal binding of GPIbalpha to Mac-1 doubled in the presence of HK. Moreover, HK/HKa increased the Mac-1-dependent adhesion of myelomonocytic U937 cells and K562 cells transfected with Mac-1 to immobilized GPIbalpha or to GPIbalpha-transfected Chinese hamster ovary cells. Finally, Mac-1-dependent adhesion of neutrophils to surface-adherent platelets was enhanced by HK. Thus, HK can bridge leukocytes with platelets by interacting via its domain 3 with GPIbalpha and via its domain 5 with Mac-1 thereby augmenting the Mac-1-GPIbalpha interaction. These distinct molecular interactions of HK with leukocytes and platelets contribute to the regulation of the adhesive behavior of vascular cells and provide novel molecular targets for reducing atherothrombotic pathologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The central nervous system (CNS) has long been regarded as an immune privileged organ implying that the immune system avoids the CNS not to disturb its homeostasis, which is critical for proper function of neurons. Meanwhile, it is accepted that immune cells do in fact gain access to the CNS and that immune responses are mounted within this tissue. However, the unique CNS microenvironment strictly controls these immune reactions starting with tightly regulating immune cell entry into the tissue. The endothelial blood-brain barrier (BBB) and the epithelial blood-cerebrospinal fluid (CSF) barrier control immune cell entry into the CNS, which is rare under physiological conditions. During a variety of pathological conditions of the CNS such as viral or bacterial infections, or during inflammatory diseases such as multiple sclerosis (MS), immunocompetent cells readily traverse the BBB and subsequently enter the CNS parenchyma. Most of our current knowledge on the molecular mechanisms involved in immune cell entry into the CNS has been derived from studies performed in experimental autoimmune encephalomyelitis (EAE), an animal model for MS. Thus, a large part of our current knowledge on immune cell entry across the BBBs is based on the results obtained in this animal model. Similarly, knowledge on the benefits and potential risks associated with therapeutic targeting of immune cell recruitment across the BBB in human diseases are mostly derived from such treatment regimen in MS. Other mechanisms of immune cell entry into the CNS might therefore apply under different pathological conditions such as bacterial meningitis or stroke and need to be considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many hepatitis C virus (HCV) infections worldwide are with the genotype 1 and 3 strains of the virus. Cellular immune responses are known to be important in the containment of HCV genotype 1 infection, and many genotype 1 T cell targets (epitopes) that are presented by host human leukocyte antigens (HLAs) have been identified. In contrast, there is almost no information known about the equivalent responses to genotype 3. Immune escape mechanisms used by HCV include the evolution of viral polymorphisms (adaptations) that abrogate this host-viral interaction. Evidence of HCV adaptation to HLA-restricted immune pressure on HCV can be observed at the population level as viral polymorphisms associated with specific HLA types. To evaluate the escape patterns of HCV genotypes 1 and 3, we assessed the associations between viral polymorphisms and specific HLA types from 187 individuals with genotype 1a and 136 individuals with genotype 3a infection. We identified 51 HLA-associated viral polymorphisms (32 for genotype 1a and 19 for genotype 3a). Of these putative viral adaptation sites, six fell within previously published epitopes. Only two HLA-associated viral polymorphisms were common to both genotypes. In the remaining sites with HLA-associated polymorphisms, there was either complete conservation or no significant HLA association with viral polymorphism in the alternative genotype. This study also highlights the diverse mechanisms by which viral evasion of immune responses may be achieved and the role of genotype variation in these processes. CONCLUSION: There is little overlap in HLA-associated polymorphisms in the nonstructural proteins of HCV for the two genotypes, implying differences in the cellular immune pressures acting on these viruses and different escape profiles. These findings have implications for future therapeutic strategies to combat HCV infection, including vaccine design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

HYPOTHESIS We hypothesized that arthroscopic rotator cuff repairs using leukocyte- and platelet-rich fibrin (L-PRF) in a standardized, modified protocol is technically feasible and results in a higher vascularization response and watertight healing rate during early healing. METHODS Twenty patients with chronic rotator cuff tears were randomly assigned to 2 treatment groups. In the test group (N = 10), L-PRF was added in between the tendon and the bone during arthroscopic rotator cuff repair. The second group served as control (N = 10). They received the same arthroscopic treatment without the use of L-PRF. We used a double-row tension band technique. Clinical examinations including subjective shoulder value, visual analog scale, Constant, and Simple Shoulder Test scores and measurement of the vascularization with power Doppler ultrasonography were made at 6 and 12 weeks. RESULTS There have been no postoperative complications. At 6 and 12 weeks, there was no significant difference in the clinical scores between the test and the control groups. The mean vascularization index of the surgical tendon-to-bone insertions was always significantly higher in the L-PRF group than in the contralateral healthy shoulders at 6 and 12 weeks (P = .0001). Whereas the L-PRF group showed a higher vascularization compared with the control group at 6 weeks (P = .001), there was no difference after 12 weeks of follow-up (P = .889). Watertight healing was obtained in 89% of the repaired cuffs. DISCUSSION/CONCLUSIONS Arthroscopic rotator cuff repair with the application of L-PRF is technically feasible and yields higher early vascularization. Increased vascularization may potentially predispose to an increased and earlier cellular response and an increased healing rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AIMS Stem cells participate in vascular regeneration following critical ischemia. However, their angiogenic and remodeling properties, as well as their role in ischemia-related endothelial leukocyte activation, need to be further elucidated. Herein, we investigated the effect of bone marrow-derived mesenchymal stromal cells (BM-MSCs) in a critically ischemic murine skin flap model. METHODS Groups received either 1 × 10(5), 5 × 10(5), or 1 × 10(6) BM-MSCs or cell-free conditioned medium (CM). Controls received sodium chloride. Intravital fluorescence microscopy was performed for morphological and quantitative assessment of micro-hemodynamic parameters over 12 days. RESULTS Tortuosity and diameter of conduit-arterioles were pronounced in the MSC groups (P < 0.01), whereas vasodilation was shifted to the end arteriolar level in the CM group (P < 0.01). These effects were accompanied by angiopoietin-2 expression. Functional capillary density and red blood cell velocity were enhanced in all treatment groups (P < 0.01). Although a significant reduction of rolling and sticking leukocytes was observed in the MSC groups with a reduction of diameter in postcapillary venules (P < 0.01), animals receiving CM exhibited a leukocyte-endothelium interaction similar to controls. This correlated with leukocyte common antigen expression in tissue sections (P < 0.01) and p38 mitogen-activated protein kinase expression from tissue samples. Cytokine analysis from BM-MSC culture medium revealed a 50% reduction of pro-inflammatory cytokines (interleukin [IL]-1β, IL-6, IL-12, tumor necrosis factor-α, interferon-γ) and chemokines (keratinocyte chemoattractant, granulocyte colony-stimulating factor) under hypoxic conditions. DISCUSSION We demonstrated positive effects of BM-MSCs on vascular regeneration and modulation of endothelial leukocyte adhesion in critical ischemic skin. The improvements after MSC application were dose-dependent and superior to the use of CM alone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE To develop a score predicting the risk of adverse events (AEs) in pediatric patients with cancer who experience fever and neutropenia (FN) and to evaluate its performance. PATIENTS AND METHODS Pediatric patients with cancer presenting with FN induced by nonmyeloablative chemotherapy were observed in a prospective multicenter study. A score predicting the risk of future AEs (ie, serious medical complication, microbiologically defined infection, radiologically confirmed pneumonia) was developed from a multivariate mixed logistic regression model. Its cross-validated predictive performance was compared with that of published risk prediction rules. Results An AE was reported in 122 (29%) of 423 FN episodes. In 57 episodes (13%), the first AE was known only after reassessment after 8 to 24 hours of inpatient management. Predicting AE at reassessment was better than prediction at presentation with FN. A differential leukocyte count did not increase the predictive performance. The score predicting future AE in 358 episodes without known AE at reassessment used the following four variables: preceding chemotherapy more intensive than acute lymphoblastic leukemia maintenance (weight = 4), hemoglobin > or = 90 g/L (weight = 5), leukocyte count less than 0.3 G/L (weight = 3), and platelet count less than 50 G/L (weight = 3). A score (sum of weights) > or = 9 predicted future AEs. The cross-validated performance of this score exceeded the performance of published risk prediction rules. At an overall sensitivity of 92%, 35% of the episodes were classified as low risk, with a specificity of 45% and a negative predictive value of 93%. CONCLUSION This score, based on four routinely accessible characteristics, accurately identifies pediatric patients with cancer with FN at risk for AEs after reassessment.