4 resultados para Leitão (Suino)
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Besnoitia besnoiti, an obligate intracellular protozoan parasite belonging to the phylum apicomplexa, is the causative agent of bovine besnoitiosis. Besnoitiosis is responsible for significant losses in the cattle industry of Africa and Mediterranean countries due to the high morbidity rate, abortion and infertility in males. The acute stage of disease is associated with the proliferative forms (tachyzoites) and is characterized by fever, whimpery, general weakness and swelling of the superficial lymph nodes. During the following chronic stage, a huge number of cysts are formed mainly in the subcutaneous tissues. This process is non-reversible, and chronic besnoitiosis is characterized by hyper-sclerodermia, hyperkeratosis, alopecia and, in bulls, atrophy, sclerosis and focal necrosis that cause irreversible lesions in the testis. In this paper we report on the identification of large cysts in the skin of a cow and a bull in Portugal, which presented loss of hair and enlargement and pachydermis all over the body. The observation of a two-layered cyst wall within the host cell, the encapsulation of the host cell by a large outer cyst wall, and the subcutaneous localization of the cysts within the host, were characteristic for B. besnoiti. The parasites were isolated from the infected animals and successfully propagated in Vero cells without prior passages in laboratory animals. Morphological characterization of B. besnoiti tachyzoites and the amplification of the 149 bp segment from the internal transcribed spacer 1 (ITS1), aided with specific primers, confirmed the identification of B. besnoiti.
Resumo:
Besnoitia besnoiti, an apicomplexan protozoan parasite, is the causative agent of bovine besnoitiosis. This infection may dramatically affect body condition, and, in males, lead to irreversible infertility. While identification of clinical cases and their histopathological confirmation is relatively simple to carry out, finding subclinical forms of infection is more difficult, thus a more sensitive test for the identification of the etiological agent may be an appropriate diagnostic tool. We have developed the ITS1 rDNA-sequence-based conventional and real-time PCR which are highly sensitive and specific for the detection of B. besnoiti infection in cattle. A recombinant internal positive control was introduced to assess possible sample-related inhibitory effects during the amplification reaction and, in order to prevent false-positive results, a pre-PCR treatment of potentially contaminating dU-containing PCR product with uracil-DNA-glycosylase (UDG) was followed.
Resumo:
Nitazoxanide (NTZ) and its deacetylated metabolite tizoxanide (TIZ) exhibit considerable in vitro activity against Besnoitia besnoiti tachyzoites grown in Vero cells. Real-time-PCR was used to assess B. besnoiti tachyzoite adhesion, invasion, and intracellular proliferation in vitro. A number of NTZ-derivatives, including Rm4822 and Rm4803, were generated, in which the thiazole-ring-associated nitro-group was replaced by a bromo-moiety. We here show that replacement of the nitro-group on the thiazole ring with a bromo (as it occurs in Rm4822) does not impair the efficacy of the drug, but methylation of the salicylate ring at the ortho-position in a bromo-derivative (Rm4803) results in complete abrogation of the antiparasitic activity. Treatment of extracellular B. besnoiti tachyzoites with NTZ has an inhibitory effect on host cell invasion, while treatments with TIZ, Rm4822 do not. TEM demonstrates that the effects of Rm4822 treatment upon the parasites are similar to the damage induced by NTZ. This includes increased vacuolization of the parasite cytoplasm, and loss of the structural integrity of the parasitophorous vacuole and its membrane. Thus, Rm4822, due to the absence of a potentially mutagenic nitro-group, may represent an important potential addition to the anti-parasitic arsenal for food animal production, especially in cattle.
Resumo:
Bovine besnoitiosis is caused by the largely unexplored apicomplexan parasite Besnoitia besnoiti. In cows, infection during pregnancy often results in abortion, and chronically infected bulls become infertile. Similar to other apicomplexans B. besnoiti has acquired a largely intracellular lifestyle, but its complete life cycle is still unknown, modes of transmission have not been entirely resolved and the definitive host has not been identified. Outbreaks of bovine besnoitiosis in cattle were described in the 1990s in Portugal and Spain, and later several cases were also detected in France. More cases have been reported recently in hitherto unaffected countries, including Italy, Germany, Switzerland, Hungary and Croatia. To date, there is still no effective pharmaceutical compound available for the treatment of besnoitiosis in cattle, and progress in the identification of novel targets for intervention through pharmacological or immunological means is hampered by the lack of molecular data on the genomic and transcriptomic level. In addition, the lack of an appropriate small animal laboratory model, and wide gaps in our knowledge on the host-parasite interplay during the life cycle of this parasite, renders vaccine and drug development a cost- and labour-intensive undertaking.