5 resultados para Learning Programming Paradigms
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Recent modeling of spike-timing-dependent plasticity indicates that plasticity involves as a third factor a local dendritic potential, besides pre- and postsynaptic firing times. We present a simple compartmental neuron model together with a non-Hebbian, biologically plausible learning rule for dendritic synapses where plasticity is modulated by these three factors. In functional terms, the rule seeks to minimize discrepancies between somatic firings and a local dendritic potential. Such prediction errors can arise in our model from stochastic fluctuations as well as from synaptic input, which directly targets the soma. Depending on the nature of this direct input, our plasticity rule subserves supervised or unsupervised learning. When a reward signal modulates the learning rate, reinforcement learning results. Hence a single plasticity rule supports diverse learning paradigms.
Resumo:
Typically, statistical learning is investigated by testing the acquisition of specific items or forming general rules. As implicit sequence learning also involves the extraction of regularities from the environment, it can also be considered as an instance of statistical learning. In the present study, a Serial Reaction Time Task was used to test whether the continuous versus interleaved repetition of a sequence affects implicit learning despite the equal exposure to the sequences. The results revealed a sequence learning advantage for the continuous repetition condition compared to the interleaved condition. This suggests that by repetition, additional sequence information was extracted although the exposure to the sequences was identical as in the interleaved condition. The results are discussed in terms of similarities and potential differences between typical statistical learning paradigms and sequence learning.
Resumo:
Synesthesia is characterized by consistent extra perceptual experiences in response to normal sensory input. Recent studies provide evidence for a specific profile of enhanced memory performance in synesthesia, but focus exclusively on explicit memory paradigms for which the learned content is consciously accessible. In this study, for the first time, we demonstrate with an implicit memory paradigm that synesthetic experiences also enhance memory performance relating to unconscious knowledge.
Resumo:
Libraries of learning objects may serve as basis for deriving course offerings that are customized to the needs of different learning communities or even individuals. Several ways of organizing this course composition process are discussed. Course composition needs a clear understanding of the dependencies between the learning objects. Therefore we discuss the metadata for object relationships proposed in different standardization projects and especially those suggested in the Dublin Core Metadata Initiative. Based on these metadata we construct adjacency matrices and graphs. We show how Gozinto-type computations can be used to determine direct and indirect prerequisites for certain learning objects. The metadata may also be used to define integer programming models which can be applied to support the instructor in formulating his specifications for selecting objects or which allow a computer agent to automatically select learning objects. Such decision models could also be helpful for a learner navigating through a library of learning objects. We also sketch a graph-based procedure for manual or automatic sequencing of the learning objects.