7 resultados para Laser beams

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present experimental results on the intracavity generation of radially polarized light by incorporation of a polarization-selective mirror in a CO2 -laser resonator. The selectivity is achieved with a simple binary dielectric diffraction grating etched in the backsurface of the mirror substrate. Very high polarization selectivity was achieved, and good agreement of simulation and experimental results is shown. The overall radial polarization purity of the generated laser beam was found to be higher than 90% .

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ARGONTUBE is a liquid argon time projection chamber (LAr TPC) with a drift field generated in-situ by a Greinacher voltage multiplier circuit. We present results on the measurement of the drift-field distribution inside ARGONTUBE using straight ionization tracks generated by an intense UV laser beam. Our analysis is based on a simplified model of the charging of a multi-stage Greinacher circuit to describe the voltages on the field cage rings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The generation of collimated electron beams from metal double-gate nanotip arrays excited by near infrared laser pulses is studied. Using electromagnetic and particle tracking simulations, we showed that electron pulses with small rms transverse velocities are efficiently produced from nanotip arrays by laser-induced field emission with the laser wavelength tuned to surface plasmon polariton resonance of the stacked double-gate structure. The result indicates the possibility of realizing a metal nanotip array cathode that outperforms state-of-the-art photocathodes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a derivation and, based on it, an extension of a model originally proposed by V.G. Niziev to describe continuous wave laser cutting of metals. Starting from a local energy balance and by incorporating heat removal through heat conduction to the bulk material, we find a differential equation for the cutting profile. This equation is solved numerically and yields, besides the cutting profiles, the maximum cutting speed, the absorptivity profiles, and other relevant quantities. Our main goal is to demonstrate the model’s capability to explain some of the experimentally observed differences between laser cutting at around 1 and 10 μm wavelengths. To compare our numerical results to experimental observations, we perform simulations for exactly the same material and laser beam parameters as those used in a recent comparative experimental study. Generally, we find good agreement between theoretical and experimental results and show that the main differences between laser cutting with 1- and 10-μm beams arise from the different absorptivity profiles and absorbed intensities. Especially the latter suggests that the energy transfer, and thus the laser cutting process, is more efficient in the case of laser cutting with 1-μm beams.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laser pulses are largely used for processing and analysis of materials and in particular for nano-particle synthesis. This paper addresses fundamentals of the generation of nano-materials following specific thermodynamic paths of the irradiated material. Computer simulations using the hydro code MULTI and the SESAME equation of state have been performed to follow the dynamics of a target initially heated by a short laser pulse over a distance comparable to the metal skin depth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A number of liquid argon time projection chambers (LAr TPCs) are being built or are proposed for neutrino experiments on long- and short baseline beams. For these detectors, a distortion in the drift field due to geometrical or physics reasons can affect the reconstruction of the events. Depending on the TPC geometry and electric drift field intensity, this distortion could be of the same magnitude as the drift field itself. Recently, we presented a method to calibrate the drift field and correct for these possible distortions. While straight cosmic ray muon tracks could be used for calibration, multiple coulomb scattering and momentum uncertainties allow only a limited resolution. A UV laser instead can create straight ionization tracks in liquid argon, and allows one to map the drift field along different paths in the TPC inner volume. Here we present a UV laser feed-through design with a steerable UV mirror immersed in liquid argon that can point the laser beam at many locations through the TPC. The straight ionization paths are sensitive to drift field distortions, a fit of these distortion to the linear optical path allows to extract the drift field, by using these laser tracks along the whole TPC volume one can obtain a 3D drift field map. The UV laser feed-through assembly is a prototype of the system that will be used for the MicroBooNE experiment at the Fermi National Accelerator Laboratory (FNAL).