9 resultados para Large power system
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
We consider a large quantum system with spins 12 whose dynamics is driven entirely by measurements of the total spin of spin pairs. This gives rise to a dissipative coupling to the environment. When one averages over the measurement results, the corresponding real-time path integral does not suffer from a sign problem. Using an efficient cluster algorithm, we study the real-time evolution from an initial antiferromagnetic state of the two-dimensional Heisenberg model, which is driven to a disordered phase, not by a Hamiltonian, but by sporadic measurements or by continuous Lindblad evolution.
Resumo:
Developers rely on the mechanisms provided by their IDE to browse and navigate a large software system. These mechanisms are usually based purely on a system's static source code. The static perspective, however, is not enough to understand an object-oriented program's behavior, in particular if implemented in a dynamic language. We propose to enhance IDEs with a program's runtime information (eg. message sends and type information) to support program comprehension through precise navigation and informative browsing. To precisely specify the type and amount of runtime data to gather about a system under development, dynamically and on demand, we adopt a technique known as partial behavioral reflection. We implemented navigation and browsing enhancements to an IDE that exploit this runtime information in a prototype called Hermion. We present preliminary validation of our experimental enhanced IDE by asking developers to assess its usefulness to understand an unfamiliar software system.
Resumo:
We present a power-scalable approach for yellow laser-light generation based on standard Ytterbium (Yb) doped fibers. To force the cavity to lase at 1154 nm, far above the gain-maximum, measures must be taken to fulfill lasing condition and to suppress competing amplified spontaneous emission (ASE) in the high-gain region. To prove the principle we built a fiber-laser cavity and a fiber-amplifier both at 1154 nm. In between cavity and amplifier we suppressed the ASE by 70 dB using a fiber Bragg grating (FBG) based filter. Finally we demonstrated efficient single pass frequency doubling to 577 nm with a periodically poled lithium niobate crystal (PPLN). With our linearly polarized 1154 nm master oscillator power fiber amplifier (MOFA) system we achieved slope efficiencies of more than 15 % inside the cavity and 24 % with the fiber-amplifier. The frequency doubling followed the predicted optimal efficiency achievable with a PPLN crystal. So far we generated 1.5 W at 1154nm and 90 mW at 577 nm. Our MOFA approach for generation of 1154 nm laser radiation is power-scalable by using multi-stage amplifiers and large mode-area fibers and is therefore very promising for building a high power yellow laser-light source of several tens of Watt.
Resumo:
Tumor budding is recognized by the World Health Organization as an additional prognostic factor in colorectal cancer but remains unreported in diagnostic work due to the absence of a standardized scoring method. This study aims to assess the most prognostic and reproducible scoring systems for tumor budding in colorectal cancer. Tumor budding on pancytokeratin-stained whole tissue sections from 105 well-characterized stage II patients was scored by 3 observers using 7 methods: Hase, Nakamura, Ueno, Wang (conventional and rapid method), densest high-power field, and 10 densest high-power fields. The predictive value for clinicopathologic features, the prognostic significance, and interobserver variability of each scoring method was analyzed. Pancytokeratin staining allowed accurate evaluation of tumor buds. Interobserver agreement for 3 observers was excellent for densest high-power field (intraclass correlation coefficient, 0.83) and 10 densest high-power fields (intraclass correlation coefficient, 0.91). Agreement was moderate to substantial for the conventional Wang method (κ = 0.46-0.62) and moderate for the rapid method (κ = 0.46-0.58). For Nakamura, moderate agreement (κ = 0.41-0.52) was reached, whereas concordance was fair to moderate for Ueno (κ = 0.39-0.56) and Hase (κ = 0.29-0.51). The Hase, Ueno, densest high-power field, and 10 densest high-power field methods identified a significant association of tumor budding with tumor border configuration. In multivariate analysis, only tumor budding as evaluated in densest high-power field and 10 densest high-power fields had significant prognostic effects on patient survival (P < .01), with high prognostic accuracy over the full 10-year follow-up. Scoring tumor buds in 10 densest high-power fields is a promising method to identify stage II patients at high risk for recurrence in daily diagnostics; it is highly reproducible, accounts for heterogeneity, and has a strong predictive value for adverse outcome.
Resumo:
Current treatments for Alzheimer's disease (AD) are only able to slow the progression of mental deterioration, making early and reliable diagnosis an essential part of any promising therapeutic strategy. In the initial stages of AD, the first neuropathological alterations occur in the perforant pathway (PP), a large neuronal fiber tract located at the entrance to the limbic system. However, to date, there is no sensitive diagnostic tool for performing in vivo assessments of this structure. In the present bimodal magnetic resonance imaging (MRI) study, we examined 10 elderly controls, 10 subjects suffering from mild cognitive impairment (MCI), and 10 AD patients in order to evaluate the sensitivity of diffusion tensor imaging (DTI), a new MRI technique, for detecting changes in the PP. Furthermore, the diagnostic explanatory power of DTI data of the PP should be compared to high-resolution MRI volumetry and intervoxel coherences (COH) of the hippocampus and the entorhinal cortex, two limbic regions also involved in the pathophysiology of early AD. DTI revealed a marked decrease in COH values in the PP region of MCI (right side: 26%, left side: 29%, as compared to controls) and AD patients (right side: 37%, left side: 43%, as compared to controls). Reductions in COH values of the PP region were significantly correlated with cognitive impairment. DTI data of the PP zone were the only parameter differing significantly between control subjects and MCI patients, while the volumetric measures and the COH values of the hippocampus and the entorhinal cortex did not. DTI of medial temporal brain regions is a promising non-invasive tool for the in vivo diagnosis of the early/preclinical stages of AD.
Resumo:
This paper introduces an area- and power-efficient approach for compressive recording of cortical signals used in an implantable system prior to transmission. Recent research on compressive sensing has shown promising results for sub-Nyquist sampling of sparse biological signals. Still, any large-scale implementation of this technique faces critical issues caused by the increased hardware intensity. The cost of implementing compressive sensing in a multichannel system in terms of area usage can be significantly higher than a conventional data acquisition system without compression. To tackle this issue, a new multichannel compressive sensing scheme which exploits the spatial sparsity of the signals recorded from the electrodes of the sensor array is proposed. The analysis shows that using this method, the power efficiency is preserved to a great extent while the area overhead is significantly reduced resulting in an improved power-area product. The proposed circuit architecture is implemented in a UMC 0.18 [Formula: see text]m CMOS technology. Extensive performance analysis and design optimization has been done resulting in a low-noise, compact and power-efficient implementation. The results of simulations and subsequent reconstructions show the possibility of recovering fourfold compressed intracranial EEG signals with an SNR as high as 21.8 dB, while consuming 10.5 [Formula: see text]W of power within an effective area of 250 [Formula: see text]m × 250 [Formula: see text]m per channel.
Resumo:
Indoor localization systems become more interesting for researchers because of the attractiveness of business cases in various application fields. A WiFi-based passive localization system can provide user location information to third-party providers of positioning services. However, indoor localization techniques are prone to multipath and Non-Line Of Sight (NLOS) propagation, which lead to significant performance degradation. To overcome these problems, we provide a passive localization system for WiFi targets with several improved algorithms for localization. Through Software Defined Radio (SDR) techniques, we extract Channel Impulse Response (CIR) information at the physical layer. CIR is later adopted to mitigate the multipath fading problem. We propose to use a Nonlinear Regression (NLR) method to relate the filtered power information to propagation distances, which significantly improves the ranging accuracy compared to the commonly used log-distance path loss model. To mitigate the influence of ranging errors, a new trilateration algorithm is designed as well by combining Weighted Centroid and Constrained Weighted Least Square (WC-CWLS) algorithms. Experiment results show that our algorithm is robust against ranging errors and outperforms the linear least square algorithm and weighted centroid algorithm.