28 resultados para Large modeling projects

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

90.00% 90.00%

Publicador:

Resumo:

More than 40 years after the agrarian reform, Peru is experiencing a renewed process of concentration of land ownership in the hands of large-scale investors, favoring the development of a sugar cane production cluster along the northern coast. The expansion of the agricultural frontier by means of large irrigation projects – originally developed to benefit medium- and small-scale farmers – is carried out today in order to be sold to large-scale investors for the production of export crops. In the region of Piura the increasing presence of large-scale biofuel investors puts substantial pressure on land and water resources, not only changing the use of and access to land for local communities, but also generating water shortages vis-à-vis the multiple water demands of local food producers. The changes in land relations and the agro-ecosystem, the altering food production regime as well as the increasing proletarization of smallholders, is driving many locals – even those which (initially) welcomed the investment – into resistance activities against the increasing control of land, water and other natural resources in the hands of agribusinesses. The aim of this presentation is to discuss the contemporary political, social and cultural dynamics of agrarian change along the northern Peruvian coast as well as the «reactions from below» emanating from campesino communities, landless laborers, brick producers, pastoralists as well as other marginalized groups. The different strategies, forms and practices of resistance with the goal of the «protection of the territory» shall be explored as well as the reasons for their rather scattered occurrence and the lack of alliances on the land issue. This input shall make a contribution to the on-going debate on individual and communal property rights and the question of what is best in terms of collective defense against land grabbing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Drosophila mutants have played an important role in elucidating the physiologic function of genes. Large-scale projects have succeeded in producing mutations in a large proportion of Drosophila genes. Many mutant fly lines have also been produced through the efforts of individual laboratories over the past century. In an effort to make some of these mutants more useful to the research community, we systematically mapped a large number of mutations affecting genes in the proximal half of chromosome arm 2L to more precisely defined regions, defined by deficiency intervals, and, when possible, by individual complementation groups. To further analyze regions 36 and 39-40, we produced 11 new deficiencies with gamma irradiation, and we constructed 6 new deficiencies in region 30-33, using the DrosDel system. trans-heterozygous combinations of deficiencies revealed 5 additional functions, essential for viability or fertility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Image-based modeling of tumor growth combines methods from cancer simulation and medical imaging. In this context, we present a novel approach to adapt a healthy brain atlas to MR images of tumor patients. In order to establish correspondence between a healthy atlas and a pathologic patient image, tumor growth modeling in combination with registration algorithms is employed. In a first step, the tumor is grown in the atlas based on a new multi-scale, multi-physics model including growth simulation from the cellular level up to the biomechanical level, accounting for cell proliferation and tissue deformations. Large-scale deformations are handled with an Eulerian approach for finite element computations, which can operate directly on the image voxel mesh. Subsequently, dense correspondence between the modified atlas and patient image is established using nonrigid registration. The method offers opportunities in atlasbased segmentation of tumor-bearing brain images as well as for improved patient-specific simulation and prognosis of tumor progression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A feature represents a functional requirement fulfilled by a system. Since many maintenance tasks are expressed in terms of features, it is important to establish the correspondence between a feature and its implementation in source code. Traditional approaches to establish this correspondence exercise features to generate a trace of runtime events, which is then processed by post-mortem analysis. These approaches typically generate large amounts of data to analyze. Due to their static nature, these approaches do not support incremental and interactive analysis of features. We propose a radically different approach called live feature analysis, which provides a model at runtime of features. Our approach analyzes features on a running system and also makes it possible to grow feature representations by exercising different scenarios of the same feature, and identifies execution elements even to the sub-method level. We describe how live feature analysis is implemented effectively by annotating structural representations of code based on abstract syntax trees. We illustrate our live analysis with a case study where we achieve a more complete feature representation by exercising and merging variants of feature behavior and demonstrate the efficiency or our technique with benchmarks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cognitive impairments are currently regarded as important determinants of functional domains and are promising treatment goals in schizophrenia. Nevertheless, the exact nature of the interdependent relationship between neurocognition and social cognition as well as the relative contribution of each of these factors to adequate functioning remains unclear. The purpose of this article is to systematically review the findings and methodology of studies that have investigated social cognition as a mediator variable between neurocognitive performance and functional outcome in schizophrenia. Moreover, we carried out a study to evaluate this mediation hypothesis by the means of structural equation modeling in a large sample of 148 schizophrenia patients. The review comprised 15 studies. All but one study provided evidence for the mediating role of social cognition both in cross-sectional and in longitudinal designs. Other variables like motivation and social competence additionally mediated the relationship between social cognition and functional outcome. The mean effect size of the indirect effect was 0.20. However, social cognitive domains were differentially effective mediators. On average, 25% of the variance in functional outcome could be explained in the mediation model. The results of our own statistical analysis are in line with these conclusions: Social cognition mediated a significant indirect relationship between neurocognition and functional outcome. These results suggest that research should focus on differential mediation pathways. Future studies should also consider the interaction with other prognostic factors, additional mediators, and moderators in order to increase the predictive power and to target those factors relevant for optimizing therapy effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pumped-storage (PS) systems are used to store electric energy as potential energy for release during peak demand. We investigate the impacts of a planned 1000 MW PS scheme connecting Lago Bianco with Lago di Poschiavo (Switzerland) on temperature and particle mass concentration in both basins. The upper (turbid) basin is a reservoir receiving large amounts of fine particles from the partially glaciated watershed, while the lower basin is a much clearer natural lake. Stratification, temperature and particle concentrations in the two basins were simulated with and without PS for four different hydrological conditions and 27 years of meteorological forcing using the software CE-QUAL-W2. The simulations showed that the PS operations lead to an increase in temperature in both basins during most of the year. The increase is most pronounced (up to 4°C) in the upper hypolimnion of the natural lake toward the end of summer stratification and is partially due to frictional losses in the penstocks, pumps and turbines. The remainder of the warming is from intense coupling to the atmosphere while water resides in the shallower upper reservoir. These impacts are most pronounced during warm and dry years, when the upper reservoir is strongly heated and the effects are least concealed by floods. The exchange of water between the two basins relocates particles from the upper reservoir to the lower lake, where they accumulate during summer in the upper hypolimnion (10 to 20 mg L−1) but also to some extent decrease light availability in the trophic surface layer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-resolution and highly precise age models for recent lake sediments (last 100–150 years) are essential for quantitative paleoclimate research. These are particularly important for sedimentological and geochemical proxies, where transfer functions cannot be established and calibration must be based upon the relation of sedimentary records to instrumental data. High-precision dating for the calibration period is most critical as it determines directly the quality of the calibration statistics. Here, as an example, we compare radionuclide age models obtained on two high-elevation glacial lakes in the Central Chilean Andes (Laguna Negra: 33°38′S/70°08′W, 2,680 m a.s.l. and Laguna El Ocho: 34°02′S/70°19′W, 3,250 m a.s.l.). We show the different numerical models that produce accurate age-depth chronologies based on 210Pb profiles, and we explain how to obtain reduced age-error bars at the bottom part of the profiles, i.e., typically around the end of the 19th century. In order to constrain the age models, we propose a method with five steps: (i) sampling at irregularly-spaced intervals for 226Ra, 210Pb and 137Cs depending on the stratigraphy and microfacies, (ii) a systematic comparison of numerical models for the calculation of 210Pb-based age models: constant flux constant sedimentation (CFCS), constant initial concentration (CIC), constant rate of supply (CRS) and sediment isotope tomography (SIT), (iii) numerical constraining of the CRS and SIT models with the 137Cs chronomarker of AD 1964 and, (iv) step-wise cross-validation with independent diagnostic environmental stratigraphic markers of known age (e.g., volcanic ash layer, historical flood and earthquakes). In both examples, we also use airborne pollutants such as spheroidal carbonaceous particles (reflecting the history of fossil fuel emissions), excess atmospheric Cu deposition (reflecting the production history of a large local Cu mine), and turbidites related to historical earthquakes. Our results show that the SIT model constrained with the 137Cs AD 1964 peak performs best over the entire chronological profile (last 100–150 years) and yields the smallest standard deviations for the sediment ages. Such precision is critical for the calibration statistics, and ultimately, for the quality of the quantitative paleoclimate reconstruction. The systematic comparison of CRS and SIT models also helps to validate the robustness of the chronologies in different sections of the profile. Although surprisingly poorly known and under-explored in paleolimnological research, the SIT model has a great potential in paleoclimatological reconstructions based on lake sediments

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Forests near the Mediterranean coast have been shaped by millennia of human disturbance. Consequently, ecological studies relying on modern observations or historical records may have difficulty assessing natural vegetation dynamics under current and future climate. We combined a sedimentary pollen record from Lago di Massacciucoli, Tuscany, Italy with simulations from the LandClim dynamic vegetation model to determine what vegetation preceded intense human disturbance, how past changes in vegetation relate to fire and browsing, and the potential of an extinct vegetation type under present climate. We simulated vegetation dynamics near Lago di Massaciucoli for the last 7,000 years using a local chironomid-inferred temperature reconstruction with combinations of three fire regimes (small infrequent, large infrequent, small frequent) and three browsing intensities (no browsing, light browsing, and moderate browsing), and compared model output to pollen data. Simulations with low disturbance support pollen-inferred evidence for a mixed forest dominated by Quercus ilex (a Mediterranean species) and Abies alba (a montane species). Whereas pollen data record the collapse of A. alba after 6000 cal yr bp, simulated populations expanded with declining summer temperatures during the late Holocene. Simulations with increased fire and browsing are consistent with evidence for expansion by deciduous species after A. alba collapsed. According to our combined paleo-environmental and modeling evidence, mixed Q. ilex and A. alba forests remain possible with current climate and limited disturbance, and provide a viable management objective for ecosystems near the Mediterranean coast and in regions that are expected to experience a mediterranean-type climate in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In terms of atmospheric impact, the volcanic eruption of Mt. Pinatubo (1991) is the best characterized large eruption on record. We investigate here the model-derived stratospheric warming following the Pinatubo eruption as derived from SAGE II extinction data including recent improvements in the processing algorithm. This method, termed SAGE_4λ, makes use of the four wavelengths (385, 452, 525 and 1024 nm) of the SAGE II data when available, and uses a data-filling procedure in the opacity-induced "gap" regions. Using SAGE_4λ, we derived aerosol size distributions that properly reproduce extinction coefficients also at much longer wavelengths. This provides a good basis for calculating the absorption of terrestrial infrared radiation and the resulting stratospheric heating. However, we also show that the use of this data set in a global chemistry–climate model (CCM) still leads to stronger aerosol-induced stratospheric heating than observed, with temperatures partly even higher than the already too high values found by many models in recent general circulation model (GCM) and CCM intercomparisons. This suggests that the overestimation of the stratospheric warming after the Pinatubo eruption may not be ascribed to an insufficient observational database but instead to using outdated data sets, to deficiencies in the implementation of the forcing data, or to radiative or dynamical model artifacts. Conversely, the SAGE_4λ approach reduces the infrared absorption in the tropical tropopause region, resulting in a significantly better agreement with the post-volcanic temperature record at these altitudes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our knowledge about the lunar environment is based on a large volume of ground-based, remote, and in situ observations. These observations have been conducted at different times and sampled different pieces of such a complex system as the surface-bound exosphere of the Moon. Numerical modeling is the tool that can link results of these separate observations into a single picture. Being validated against previous measurements, models can be used for predictions and interpretation of future observations results. In this paper we present a kinetic model of the sodium exosphere of the Moon as well as results of its validation against a set of ground-based and remote observations. The unique characteristic of the model is that it takes the orbital motion of the Moon and the Earth into consideration and simulates both the exosphere as well as the sodium tail self-consistently. The extended computational domain covers the part of the Earth’s orbit at new Moon, which allows us to study the effect of Earth’s gravity on the lunar sodium tail. The model is fitted to a set of ground-based and remote observations by tuning sodium source rate as well as values of sticking, and accommodation coefficients. The best agreement of the model results with the observations is reached when all sodium atoms returning from the exosphere stick to the surface and the net sodium escape rate is about 5.3 × 1022 s−1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the last ~20 years, soil spectral libraries storing near-infrared reflectance (NIR) spectra from diverse soil samples have been built for many places, since almost 10 years also for Tajikistan. Many calibration approaches have been reported and used for prediction from large and heterogeneous libraries, but most are hampered by the high diversity of the soils, where the mineral background is heavily influencing spectral features. In such cases, local learning strategies have the advantage of building locally adapted calibrations, which can deal better with nonlinearities. Therefore, it was our major aim to identify the most efficient approach to develop an accurate and stable locally weigthed calibration model using a spectral library compiled over the past years. Keywords: Tajikistan, Near-Infrared spectroscopy (NIRS), soil organic carbon, locally weighted regression, regional and local spectral library.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gas diffusion research in soils covers, to a large extent, the transport behavior of practically insoluble gases. We extend the mathematical description of gas transport to include reactive gaseous components that hydrolyze in water such as SO2 and CO2. The path between the free atmosphere and the microporous niches is modeled by assuming penetration through gas-filled macropores, air-water phase transfer, and diffusion and speciation in the liquid phase. For hydrolyzable gases, the rate of mass transfer into and the total absorption capacity of the soil solution may be high. Both the capacity and the transfer rate are influenced by the soil-solution pH; for high pH, they become extremely high for SO2. The soil absorption of such gases is also influenced by soil structure. Well-aerated, near-neutral soils are a potentially important sink for SO2.