40 resultados para Large Data Sets
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
OBJECTIVE: The aim of this study was to evaluate soft tissue image quality of a mobile cone-beam computed tomography (CBCT) scanner with an integrated flat-panel detector. STUDY DESIGN: Eight fresh human cadavers were used in this study. For evaluation of soft tissue visualization, CBCT data sets and corresponding computed tomography (CT) and magnetic resonance imaging (MRI) data sets were acquired. Evaluation was performed with the help of 10 defined cervical anatomical structures. RESULTS: The statistical analysis of the scoring results of 3 examiners revealed the CBCT images to be of inferior quality regarding the visualization of most of the predefined structures. Visualization without a significant difference was found regarding the demarcation of the vertebral bodies and the pyramidal cartilages, the arteriosclerosis of the carotids (compared with CT), and the laryngeal skeleton (compared with MRI). Regarding arteriosclerosis of the carotids compared with MRI, CBCT proved to be superior. CONCLUSIONS: The integration of a flat-panel detector improves soft tissue visualization using a mobile CBCT scanner.
Resumo:
Here we present a study of the 11 yr sunspot cycle's imprint on the Northern Hemisphere atmospheric circulation, using three recently developed gridded upper-air data sets that extend back to the early twentieth century. We find a robust response of the tropospheric late-wintertime circulation to the sunspot cycle, independent from the data set. This response is particularly significant over Europe, although results show that it is not directly related to a North Atlantic Oscillation (NAO) modulation; instead, it reveals a significant connection to the more meridional Eurasian pattern (EU). The magnitude of mean seasonal temperature changes over the European land areas locally exceeds 1 K in the lower troposphere over a sunspot cycle. We also analyse surface data to address the question whether the solar signal over Europe is temporally stable for a longer 250 yr period. The results increase our confidence in the existence of an influence of the 11 yr cycle on the European climate, but the signal is much weaker in the first half of the period compared to the second half. The last solar minimum (2005 to 2010), which was not included in our analysis, shows anomalies that are consistent with our statistical results for earlier solar minima.
Resumo:
This paper proposed an automated 3D lumbar intervertebral disc (IVD) segmentation strategy from MRI data. Starting from two user supplied landmarks, the geometrical parameters of all lumbar vertebral bodies and intervertebral discs are automatically extracted from a mid-sagittal slice using a graphical model based approach. After that, a three-dimensional (3D) variable-radius soft tube model of the lumbar spine column is built to guide the 3D disc segmentation. The disc segmentation is achieved as a multi-kernel diffeomorphic registration between a 3D template of the disc and the observed MRI data. Experiments on 15 patient data sets showed the robustness and the accuracy of the proposed algorithm.
Resumo:
This study evaluated the feasibility of documenting patterned injury using three dimensions and true colour photography without complex 3D surface documentation methods. This method is based on a generated 3D surface model using radiologic slice images (CT) while the colour information is derived from photographs taken with commercially available cameras. The external patterned injuries were documented in 16 cases using digital photography as well as highly precise photogrammetry-supported 3D structured light scanning. The internal findings of these deceased were recorded using CT and MRI. For registration of the internal with the external data, two different types of radiographic markers were used and compared. The 3D surface model generated from CT slice images was linked with the photographs, and thereby digital true-colour 3D models of the patterned injuries could be created (Image projection onto CT/IprojeCT). In addition, these external models were merged with the models of the somatic interior. We demonstrated that 3D documentation and visualization of external injury findings by integration of digital photography in CT/MRI data sets is suitable for the 3D documentation of individual patterned injuries to a body. Nevertheless, this documentation method is not a substitution for photogrammetry and surface scanning, especially when the entire bodily surface is to be recorded in three dimensions including all external findings, and when precise data is required for comparing highly detailed injury features with the injury-inflicting tool.
Resumo:
This paper proposed an automated three-dimensional (3D) lumbar intervertebral disc (IVD) segmentation strategy from Magnetic Resonance Imaging (MRI) data. Starting from two user supplied landmarks, the geometrical parameters of all lumbar vertebral bodies and intervertebral discs are automatically extracted from a mid-sagittal slice using a graphical model based template matching approach. Based on the estimated two-dimensional (2D) geometrical parameters, a 3D variable-radius soft tube model of the lumbar spine column is built by model fitting to the 3D data volume. Taking the geometrical information from the 3D lumbar spine column as constraints and segmentation initialization, the disc segmentation is achieved by a multi-kernel diffeomorphic registration between a 3D template of the disc and the observed MRI data. Experiments on 15 patient data sets showed the robustness and the accuracy of the proposed algorithm.
Resumo:
This paper describes informatics for cross-sample analysis with comprehensive two-dimensional gas chromatography (GCxGC) and high-resolution mass spectrometry (HRMS). GCxGC-HRMS analysis produces large data sets that are rich with information, but highly complex. The size of the data and volume of information requires automated processing for comprehensive cross-sample analysis, but the complexity poses a challenge for developing robust methods. The approach developed here analyzes GCxGC-HRMS data from multiple samples to extract a feature template that comprehensively captures the pattern of peaks detected in the retention-times plane. Then, for each sample chromatogram, the template is geometrically transformed to align with the detected peak pattern and generate a set of feature measurements for cross-sample analyses such as sample classification and biomarker discovery. The approach avoids the intractable problem of comprehensive peak matching by using a few reliable peaks for alignment and peak-based retention-plane windows to define comprehensive features that can be reliably matched for cross-sample analysis. The informatics are demonstrated with a set of 18 samples from breast-cancer tumors, each from different individuals, six each for Grades 1-3. The features allow classification that matches grading by a cancer pathologist with 78% success in leave-one-out cross-validation experiments. The HRMS signatures of the features of interest can be examined for determining elemental compositions and identifying compounds.
Resumo:
Deep tissue imaging has become state of the art in biology, but now the problem is to quantify spatial information in a global, organ-wide context. Although access to the raw data is no longer a limitation, the computational tools to extract biologically useful information out of these large data sets is still catching up. In many cases, to understand the mechanism behind a biological process, where molecules or cells interact with each other, it is mandatory to know their mutual positions. We illustrate this principle here with the immune system. Although the general functions of lymph nodes as immune sentinels are well described, many cellular and molecular details governing the interactions of lymphocytes and dendritic cells remain unclear to date and prevent an in-depth mechanistic understanding of the immune system. We imaged ex vivo lymph nodes isolated from both wild-type and transgenic mice lacking key factors for dendritic cell positioning and used software written in MATLAB to determine the spatial distances between the dendritic cells and the internal high endothelial vascular network. This allowed us to quantify the spatial localization of the dendritic cells in the lymph node, which is a critical parameter determining the effectiveness of an adaptive immune response.
Resumo:
This article explores societal culture as an antecedent of public service motivation. Culture can be a major factor in developing an institution-based theory of public service motivation. In the field of organization theory, culture is considered a fundamental factor for explaining organization behavior. But our review of the literature reveals that culture has not been fully integrated into public service motivation theory or carefully investigated in this research stream. This study starts to fill this gap in the literature by using institutionalism and social-identity theory to predict how the sub-national Germanic and Latin cultures of Switzerland, which are measured through the mother tongues of public employees and the regional locations of public offices, affect their levels of public service motivation. Our analysis centers on two large data sets of federal and municipal employees, and produces evidence that culture has a consistent impact on public service motivation. The results show that Swiss German public employees have a significantly higher level of public service motivation on the whole, while Swiss French public employees have a significantly lower level overall. Implications for theory development and future research are discussed.
Resumo:
While ecological monitoring and biodiversity assessment programs are widely implemented and relatively well developed to survey and monitor the structure and dynamics of populations and communities in many ecosystems, quantitative assessment and monitoring of genetic and phenotypic diversity that is important to understand evolutionary dynamics is only rarely integrated. As a consequence, monitoring programs often fail to detect changes in these key components of biodiversity until after major loss of diversity has occurred. The extensive efforts in ecological monitoring have generated large data sets of unique value to macro-scale and long-term ecological research, but the insights gained from such data sets could be multiplied by the inclusion of evolutionary biological approaches. We argue that the lack of process-based evolutionary thinking in ecological monitoring means a significant loss of opportunity for research and conservation. Assessment of genetic and phenotypic variation within and between species needs to be fully integrated to safeguard biodiversity and the ecological and evolutionary dynamics in natural ecosystems. We illustrate our case with examples from fishes and conclude with examples of ongoing monitoring programs and provide suggestions on how to improve future quantitative diversity surveys.
Resumo:
The new computing paradigm known as cognitive computing attempts to imitate the human capabilities of learning, problem solving, and considering things in context. To do so, an application (a cognitive system) must learn from its environment (e.g., by interacting with various interfaces). These interfaces can run the gamut from sensors to humans to databases. Accessing data through such interfaces allows the system to conduct cognitive tasks that can support humans in decision-making or problem-solving processes. Cognitive systems can be integrated into various domains (e.g., medicine or insurance). For example, a cognitive system in cities can collect data, can learn from various data sources and can then attempt to connect these sources to provide real time optimizations of subsystems within the city (e.g., the transportation system). In this study, we provide a methodology for integrating a cognitive system that allows data to be verbalized, making the causalities and hypotheses generated from the cognitive system more understandable to humans. We abstract a city subsystem—passenger flow for a taxi company—by applying fuzzy cognitive maps (FCMs). FCMs can be used as a mathematical tool for modeling complex systems built by directed graphs with concepts (e.g., policies, events, and/or domains) as nodes and causalities as edges. As a verbalization technique we introduce the restriction-centered theory of reasoning (RCT). RCT addresses the imprecision inherent in language by introducing restrictions. Using this underlying combinatorial design, our approach can handle large data sets from complex systems and make the output understandable to humans.