8 resultados para Landscape architecture--Indiana--Lake County

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT. Here we present datasets from a hydroacoustic survey in July 2011 at Lake Torneträsk, northern Sweden. Our hydroacoustic data exhibit lake floor morphologies formed by glacial erosion and accumulation processes, insights into lacustrine sediment accumulation since the beginning of deglaciation, and information on seismic activity along the Pärvie Fault. Features of glacial scouring with a high-energy relief, steep slopes, and relative reliefs of more than 50 m are observed in the large W-basin. The remainder of the lacustrine subsurface appears to host a broad variety of well preserved formations from glacial accumulation related to the last retreat of the Fennoscandian ice sheet. Deposition of glaciolacustrine and lacustrine sediments is focused in areas situated in proximity to major inlets. Sediment accumulation in distal areas of the lake seldom exceeds 2 m or is not observable. We assume that lack of sediment deposition in the lake is a result of different factors, including low rates of erosion in the catchment, a previously high lake level leading to deposition of sediments in higher elevated paleodeltas, tributaries carrying low suspension loads as a result of sedimentation in upstream lakes, and an overall low productivity in the lake. A clear off-shore trace of the Pärvie Fault could not be detected from our hydroacoustic data. However, an absence of sediment disturbance in close proximity to the presumed fault trace implies minimal seismic activity since deposition of the glaciolacustrine and lacustrine sediments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hypothesis of sympatric speciation by sexual selection has been contentious. Several recent theoretical models of sympatric speciation by disruptive sexual selection were tailored to apply to African cichlids. Most of this work concludes that the genetic architecture of female preference and male trait is a key determinant of the likelihood of disruptive sexual selection to result in speciation. We investigated the genetic architecture controlling male nuptial colouration in a sympatric sibling species pair of cichlid fish from Lake Victoria, which differ conspicuously in male colouration and female mating preferences for these. We estimated that the difference between the species in male nuptial red colouration is controlled by a minimum number of two to four genes with significant epistasis and dominance effects. Yellow colouration appears to be controlled by one gene with complete dominance. The two colours appear to be epistatically linked. Knowledge on how male colouration segregates in hybrid generations and on the number of genes controlling differences between species can help us assess whether assumptions made in simulation models of sympatric speciation by sexual selection are realistic. In the particular case of the two sister species that we studied a small number of genes causing major differences in male colouration may have facilitated the divergence in male colouration associated with speciation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Landscape evolution and surface morphology in mountainous settings are a function of the relative importance between sediment transport processes acting on hillslopes and in channels, modulated by climate variables. The Niesen nappe in the Swiss Penninic Prealps presents a unique setting in which opposite facing flanks host basins underlain by identical lithologies, but contrasting litho-tectonic architectures where lithologies either dip parallel to the topographic slope or in the opposite direction (i.e. dip slope and non-dip slope). The north-western facing Diemtigen flank represents such a dip slope situation and is characterized by a gentle topography, low hillslope gradients, poorly dissected channels, and it hosts large landslides. In contrast, the south-eastern facing Frutigen side can be described as non-dip slope flank with deeply incised bedrock channels, high mean hillslope gradients and high relief topography. Results from morphometric analysis reveal that noticeable differences in morphometric parameters can be related to the contrasts in the relative importance of the internal hillslope-channel system between both valley flanks. While the contrasting dip-orientations of the underlying flysch bedrock has promoted hillslope and channelized processes to contrasting extents and particularly the occurrence of large landslides on the dip slope flank, the flank averaged beryllium-10 (10Be)-derived denudation rates are very similar and range between 0.20 and 0.26 mm yr−1. In addition, our denudation rates offer no direct relationship to basin's slope, area, steepness or concavity index, but reveal a positive correlation to mean basin elevation that we interpret as having been controlled by climatically driven factors such as frost-induced processes and orographic precipitation. Our findings illustrate that while the landscape properties in this part of the northern Alpine border can mainly be related to the tectonic architecture of the underlying bedrock, the denudation rates have a strong orographic control through elevation dependent mean annual temperature and precipitation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cases of evolutionary diversification can be characterized along a continuum from weak to strong genetic and phenotypic differentiation. Several factors may facilitate or constrain the differentiation process. Comparative analyses of replicates of the same taxon at different stages of differentiation can be useful to identify these factors. We estimated the number of distinct phenotypic groups in threespine stickleback populations from nine lakes in Iceland and in one marine population. Using the inferred number of phenotypic groups in each lake, genetic divergence from the marine population, and physical lake and landscape variables, we tested if ecosystem size, approximated by lake size and depth, or isolation from the ancestral marine gene pool predict the occurrence and the extent of phenotypic and genetic diversification within lakes. We find intralacustrine phenotypic diversification to be the rule rather than the exception, occurring in all but the youngest lake population and being manifest in ecologically important phenotypic traits. Neutral genetic data further indicates non-random mating in four out of nine studied lakes, and restricted gene flow between sympatric phenotypic groups in two. Although neither the phenotypic variation nor the number of intralacustrine phenotypic groups were associated with any of our environmental variables, the number of phenotypic traits that were differentiated was significantly positively related to lake size, and evidence for restricted gene flow between sympatric phenotypic groups was only found in the largest lakes where trait specific phenotypic differentiation was highest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Alps and the Alpine foreland have been shaped by repeated glaciations during Quaternary glacial-interglacial cycles. Extent, timing and impact on landscape evolution of these glaciations are, however, poorly constrained due to the fragmentary character of terrestrial archives. In this context, the sedimentary infills of subglacially eroded, ‘overdeepened’, basins may serve as important archives to complement the Quaternary stratigraphy over several glacial-interglacial cycles. In this thesis, the infills of deep subglacial basins in the Lower Glatt valley (N Switzerland) are explored to better constrain the Middle- to Late Pleistocene environmental change. Five drill cores gave direct insight into to the up to ~200 m thick valley fill at the study site and allowed for detailed analysis of sedimentary facies, age and architecture of the basin fills. A first focus is set on the sedimentology of coarse-grained diamicts with sorted interbeds overlying bedrock in the trough center, which mark the onset of deposition in many glacial bedrock troughs. Evidence from macro- and microsedimentology suggests that these sediments are emplaced subglacially and reflect deposition, reworking and deformation in response to repeated coupling and decoupling of the ice-bed interface promoted by high basal water pressures. Overlying these subglacial sediments, large volumes of sandy glacio-deltaic, fine-grained glacio-lacustrine and lacustrine sediments document sedimentation during glacier retreat from the basins. On these thick valley fill sequences the applicability and reliability of luminescence dating is investigated in a second step on the basis of experiments with several different luminescence signals, protocols and experiments to assess the signal stability. The valley fill of the Lower Glatt valley is then grouped into nine depositional cycles (Formations A-I), which are related to the Birrfeld Glaciation (~MIS2), the Beringen Glaciation (~MIS6), and up to three earlier Middle Pleistocene glaciations, tentatively correlated to the Hagenholz, Habsburg, and Möhlin Glaciations, according to the regional glaciation history. The complex bedrock geometry and valley fill architecture are shown to be the result of multiple erosion and infilling cycles and reflect the interplay of subglacial erosion, glacial to lacustrine infilling of overdeepened basins, and fluvial down-cutting and aggradation in the non-overdeepened valley fill. Evidence suggests that in the study area deep bedrock incision, and/or partial re-excavation, occurred mainly during the Beringen and Hagenholz Glaciation, while older structures may have existed. Together with the observation of minor, ‘inlaid’ glacial basins, dynamic changes in the magnitude and focus of subglacial erosion over time are documented.