70 resultados para Landmarks
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The purpose of the present study was to evaluate the detectability and dimensions of periapical lesions, the relationship of the mandibular canal to the roots of the respective teeth, and the dimension of the buccal bone by using limited cone-beam computed tomography (CBCT) in comparison to conventional periapical (PA) radiographs for evaluation of mandibular molars before apical surgery.
Resumo:
In attempts to elucidate the underlying mechanisms of spinal injuries and spinal deformities, several experimental and numerical studies have been conducted to understand the biomechanical behavior of the spine. However, numerical biomechanical studies suffer from uncertainties associated with hard- and soft-tissue anatomies. Currently, these parameters are identified manually on each mesh model prior to simulations. The determination of soft connective tissues on finite element meshes can be a tedious procedure, which limits the number of models used in the numerical studies to a few instances. In order to address these limitations, an image-based method for automatic morphing of soft connective tissues has been proposed. Results showed that the proposed method is capable to accurately determine the spatial locations of predetermined bony landmarks. The present method can be used to automatically generate patient-specific models, which may be helpful in designing studies involving a large number of instances and to understand the mechanical behavior of biomechanical structures across a given population.
Resumo:
The purpose of this study was to evaluate whether measurements on conventional cephalometric radiographs are comparable with 3D measurements on 3D models of human skulls, derived from cone beam CT (CBCT) data. A CBCT scan and a conventional cephalometric radiograph were made of 40 dry skulls. Standard cephalometric software was used to identify landmarks on both the 2D images and the 3D models. The same operator identified 17 landmarks on the cephalometric radiographs and on the 3D models. All images and 3D models were traced five times with a time-interval of 1 week and the mean value of repeated measurements was used for further statistical analysis. Distances and angles were calculated. Intra-observer reliability was good for all measurements. The reproducibility of the measurements on the conventional cephalometric radiographs was higher compared with the reproducibility of measurements on the 3D models. For a few measurements a clinically relevant difference between measurements on conventional cephalometric radiographs and 3D models was found. Measurements on conventional cephalometric radiographs can differ significantly from measurements on 3D models of the same skull. The authors recommend that 3D tracings for longitudinal research are not used in cases were there are only 2D records from the past.
Resumo:
Arterial pressure-based cardiac output monitors (APCOs) are increasingly used as alternatives to thermodilution. Validation of these evolving technologies in high-risk surgery is still ongoing. In liver transplantation, FloTrac-Vigileo (Edwards Lifesciences) has limited correlation with thermodilution, whereas LiDCO Plus (LiDCO Ltd.) has not been tested intraoperatively. Our goal was to directly compare the 2 proprietary APCO algorithms as alternatives to pulmonary artery catheter thermodilution in orthotopic liver transplantation (OLT). The cardiac index (CI) was measured simultaneously in 20 OLT patients at prospectively defined surgical landmarks with the LiDCO Plus monitor (CI(L)) and the FloTrac-Vigileo monitor (CI(V)). LiDCO Plus was calibrated according to the manufacturer's instructions. FloTrac-Vigileo did not require calibration. The reference CI was derived from pulmonary artery catheter intermittent thermodilution (CI(TD)). CI(V)-CI(TD) bias ranged from -1.38 (95% confidence interval = -2.02 to -0.75 L/minute/m(2), P = 0.02) to -2.51 L/minute/m(2) (95% confidence interval = -3.36 to -1.65 L/minute/m(2), P < 0.001), and CI(L)-CI(TD) bias ranged from -0.65 (95% confidence interval = -1.29 to -0.01 L/minute/m(2), P = 0.047) to -1.48 L/minute/m(2) (95% confidence interval = -2.37 to -0.60 L/minute/m(2), P < 0.01). For both APCOs, bias to CI(TD) was correlated with the systemic vascular resistance index, with a stronger dependence for FloTrac-Vigileo. The capability of the APCOs for tracking changes in CI(TD) was assessed with a 4-quadrant plot for directional changes and with receiver operating characteristic curves for specificity and sensitivity. The performance of both APCOs was poor in detecting increases and fair in detecting decreases in CI(TD). In conclusion, the calibrated and uncalibrated APCOs perform differently during OLT. Although the calibrated APCO is less influenced by changes in the systemic vascular resistance, neither device can be used interchangeably with thermodilution to monitor cardiac output during liver transplantation.
Resumo:
n this paper we present a novel hybrid approach for multimodal medical image registration based on diffeomorphic demons. Diffeomorphic demons have proven to be a robust and efficient way for intensity-based image registration. A very recent extension even allows to use mutual information (MI) as a similarity measure to registration multimodal images. However, due to the intensity correspondence uncertainty existing in some anatomical parts, it is difficult for a purely intensity-based algorithm to solve the registration problem. Therefore, we propose to combine the resulting transformations from both intensity-based and landmark-based methods for multimodal non-rigid registration based on diffeomorphic demons. Several experiments on different types of MR images were conducted, for which we show that a better anatomical correspondence between the images can be obtained using the hybrid approach than using either intensity information or landmarks alone.
Resumo:
In the field of computer assisted orthopedic surgery (CAOS) the anterior pelvic plane (APP) is a common concept to determine the pelvic orientation by digitizing distinct pelvic landmarks. As percutaneous palpation is - especially for obese patients - known to be error-prone, B-mode ultrasound (US) imaging could provide an alternative means. Several concepts of using ultrasound imaging to determine the APP landmarks have been introduced. In this paper we present a novel technique, which uses local patch statistical shape models (SSMs) and a hierarchical speed of sound compensation strategy for an accurate determination of the APP. These patches are independently matched and instantiated with respect to associated point clouds derived from the acquired ultrasound images. Potential inaccuracies due to the assumption of a constant speed of sound are compensated by an extended reconstruction scheme. We validated our method with in-vitro studies using a plastic bone covered with a soft-tissue simulation phantom and with a preliminary cadaver trial.
Resumo:
Background Acetabular fractures still are among the most challenging fractures to treat because of complex anatomy, involved surgical access to fracture sites and the relatively low incidence of these lesions. Proper evaluation and surgical planning is necessary to achieve anatomic reduction of the articular surface and stable fixation of the pelvic ring. The goal of this study was to test the feasibility of preoperative surgical planning in acetabular fractures using a new prototype planning tool based on an interactive virtual reality-style environment. Methods 7 patients (5 male and 2 female; median age 53 y (25 to 92 y)) with an acetabular fracture were prospectively included. Exclusion criterions were simple wall fractures, cases with anticipated surgical dislocation of the femoral head for joint debridement and accurate fracture reduction. According to the Letournel classification 4 cases had two column fractures, 2 cases had anterior column fractures and 1 case had a T-shaped fracture including a posterior wall fracture. The workflow included following steps: (1) Formation of a patient-specific bone model from preoperative computed tomography scans, (2) interactive virtual fracture reduction with visuo-haptic feedback, (3) virtual fracture fixation using common osteosynthesis implants and (4) measurement of implant position relative to landmarks. The surgeon manually contoured osteosynthesis plates preoperatively according to the virtually defined deformation. Screenshots including all measurements for the OR were available. The tool was validated comparing the preoperative planning and postoperative results by 3D-superimposition. Results Preoperative planning was feasible in all cases. In 6 of 7 cases superimposition of preoperative planning and postoperative follow-up CT showed a good to excellent correlation. In one case part of the procedure had to be changed due to impossibility of fracture reduction from an ilioinguinal approach. In 3 cases with osteopenic bone patient-specific prebent fixation plates were helpful in guiding fracture reduction. Additionally, anatomical landmark based measurements were helpful for intraoperative navigation. Conclusion The presented prototype planning tool for pelvic surgery was successfully integrated in a clinical workflow to improve patient-specific preoperative planning, giving visual and haptic information about the injury and allowing a patient-specific adaptation of osteosynthesis implants to the virtually reduced pelvis.
Resumo:
The aim of this study was to demonstrate the anatomy of the quadrigeminal cistern, define the anatomic landmarks, and measure the extension of the cistern in the living by using magnetic resonance (MR) cisternography with 3-dimensional reconstruction.
Resumo:
The primary aim of the present study was to assess morphological covariation between the face and the basicranium (midline and lateral), and to evaluate patterns of integration at two specific developmental stages. A group of 71 children (6-10 years) was compared with a group of 71 adults (20-35 years). Lateral cephalometric radiographs were digitized and a total of 28 landmarks were placed on three areas; the midline cranial base, the lateral cranial base and the face. Geometric morphometric methods were applied and partial least squares analysis was used to evaluate correlation between the three shape blocks. Morphological integration was tested both with and without removing the effect of allometry. In children, mainly the midline and, to a lesser extent, the lateral cranial base were moderately correlated to the face. In adults, the correlation between the face and the midline cranial base, which ceases development earlier than the lateral base, was reduced. However, the lateral cranial base retained and even strengthened its correlation to the face. This suggests that the duration of common developmental timing is an important factor that influences integration between craniofacial structures. However, despite the apparent switch of primary roles between the cranial bases during development, the patterns of integration remained stable, thereby supporting the role of genetics over function in the establishment and development of craniofacial shape.
Resumo:
The aim of this study was to compare craniofacial morphology and soft tissue profiles in patients with complete bilateral cleft lip and palate at 9 years of age, treated in two European cleft centres with delayed hard palate closure but different treatment protocols. The cephalometric data of 83 consecutively treated patients were compared (Gothenburg, N=44; Nijmegen, N=39). In total, 18 hard tissue and 10 soft tissue landmarks were digitized by one operator. To determine the intra-observer reliability 20 cephalograms were digitized twice with a monthly interval. Paired t-test, Pearson correlation coefficients and multiple regression models were applied for statistical analysis. Hard and soft tissue data were superimposed using the Generalized Procrustes Analysis. In Nijmegen, the maxilla was protrusive for hard and soft tissue values (P=0.001, P=0.030, respectively) and the maxillary incisors were retroclined (P<0.001), influencing the nasolabial angle, which was increased in comparison with Gothenburg (P=0.004). In conclusion, both centres showed a favourable craniofacial form at 9-10 years of age, although there were significant differences in the maxillary prominence, the incisor inclination and soft tissue cephalometric values. Follow-up of these patients until facial growth has ceased, may elucidate components for outcome improvement.
Resumo:
Nerve blocks and radiofrequency neurotomy of the nerves supplying the cervical zygapophyseal joints are validated tools for diagnosis and treatment of chronic neck pain, respectively. Unlike fluoroscopy, ultrasound may allow visualization of the target nerves, thereby potentially improving diagnostic accuracy and therapeutic efficacy of the procedures. The aims of this exploratory study were to determine the ultrasound visibility of the target nerves in chronic neck pain patients and to describe the variability of their course in relation to the fluoroscopically used bony landmarks.
Resumo:
Despite the increased use of intracranial neuromonitoring during experimental subarachnoid hemorrhage (SAH), coordinates for probe placement in rabbits are lacking. This study evaluates the safety and reliability of using outer skull landmarks to identify locations for placement of cerebral blood flow (CBF) and intraparenchymal intracranial pressure (ICP) probes. Experimental SAH was performed in 17 rabbits using an extracranial-intracranial shunt model. ICP probes were placed in the frontal lobe and compared to measurements recorded from the olfactory bulb. CBF probes were placed in various locations in the frontal cortex anterior to the coronary suture. Insertion depth, relation to the ventricular system, and ideal placement location were determined by post-mortem examination. ICP recordings at the time of SAH from the frontal lobe did not differ significantly from those obtained from the right olfactory bulb. Ideal coordinates for intraparenchymal CBF probes in the left and right frontal lobe were found to be located 4.6±0.9 and 4.5±1.2 anterior to the bregma, 4.7±0.7mm and 4.7±0.5mm parasagittal, and at depths of 4±0.5mm and 3.9±0.5mm, respectively. The results demonstrate that the presented coordinates based on skull landmarks allow reliable placement of intraparenchymal ICP and CBF probes in rabbit brains without the use of a stereotactic frame.
Resumo:
External beam proton radiation therapy has been used since 1975 to treat choroidal melanoma. For tumor location determination during proton radiation treatment, surgical tantalum clips are registered with image data. This report introduces the intraoperative application of an opto-electronic navigation system to determine with high precision the position of the tantalum markers and their spatial relationship to the tumor and anatomical landmarks. The application of the technique in the first 4 patients is described.
Resumo:
Localization is information of fundamental importance to carry out various tasks in the mobile robotic area. The exact degree of precision required in the localization depends on the nature of the task. The GPS provides global position estimation but is restricted to outdoor environments and has an inherent imprecision of a few meters. In indoor spaces, other sensors like lasers and cameras are commonly used for position estimation, but these require landmarks (or maps) in the environment and a fair amount of computation to process complex algorithms. These sensors also have a limited field of vision. Currently, Wireless Networks (WN) are widely available in indoor environments and can allow efficient global localization that requires relatively low computing resources. However, the inherent instability in the wireless signal prevents it from being used for very accurate position estimation. The growth in the number of Access Points (AP) increases the overlap signals areas and this could be a useful means of improving the precision of the localization. In this paper we evaluate the impact of the number of Access Points in mobile nodes localization using Artificial Neural Networks (ANN). We use three to eight APs as a source signal and show how the ANNs learn and generalize the data. Added to this, we evaluate the robustness of the ANNs and evaluate a heuristic to try to decrease the error in the localization. In order to validate our approach several ANNs topologies have been evaluated in experimental tests that were conducted with a mobile node in an indoor space.