35 resultados para Laboratory techniques and procedures
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Deep geological storage of radioactive waste foresees cementitious materials as reinforcement of tunnels and as backfill. Bentonite is proposed to enclose spent fuel drums, and as drift seals. The emplacement of cementitious material next to clay material generates an enormous chemical gradient in pore water composition that drives diffusive solute transport. Laboratory studies and reactive transport modeling predict significant mineral alteration at and near interfaces, mainly resulting in a decrease of porosity in bentonite. The goal of this project is to characterize and quantify the cement/bentonite skin effects spatially and temporally in laboratory experiments. A newly developed mobile X-ray transparent core infiltration device was used, which allows performing X-ray computed tomography (CT) periodically without interrupting a running experiment. A pre-saturated cylindrical MX-80 bentonite sample (1920 kg/m3 average wet density) is subjected to a confining pressure as a constant total pressure boundary condition. The infiltration of a hyperalkaline (pH 13.4), artificial OPC (ordinary Portland cement) pore water into the bentonite plug alters the mineral assemblage over time as an advancing reaction front. The related changes in X-ray attenuation values are related to changes in phase densities, porosity and local bulk density and are tracked over time periodically by non-destructive CT scans.
Resumo:
Noninvasive blood flow measurements based on Doppler ultrasound studies are the main clinical tool for studying the cardiovascular status of fetuses at risk for circulatory compromise. Usually, qualitative analysis of peripheral arteries and in particular clinical situations such as severe growth restriction or volume overload also of venous vessels close to the heart or of flow patterns in the heart is being used to gauge the level of compensation in a fetus. However, quantitative assessment of the driving force of the fetal circulation, the cardiac output remains an elusive goal in fetal medicine. This article reviews the methods for direct and indirect assessment of cardiac function and explains new clinical applications. Part 1 of this review describes the concept of cardiac function and cardiac output and the techniques that have been used to quantify output. Part 2 summarizes the use of arterial and venous Doppler studies in the fetus and gives a detailed description of indirect measurements of cardiac function (like indices derived from the duration of segments of the cardiac cycle) with current examples of their application.
Resumo:
The design of a high-density neural recording system targeting epilepsy monitoring is presented. Circuit challenges and techniques are discussed to optimize the amplifier topology and the included OTA. A new platform supporting active recording devices targeting wireless and high-resolution focus localization in epilepsy diagnosis is also proposed. The post-layout simulation results of an amplifier dedicated to this application are presented. The amplifier is designed in a UMC 0.18µm CMOS technology, has an NEF of 2.19 and occupies a silicon area of 0.038 mm(2), while consuming 5.8 µW from a 1.8-V supply.
Resumo:
INTRODUCTION Acute leg ischaemia (ALI) is a common vascular emergency for which new minimally invasive treatment options were introduced in the 1990s. The aim of this study was to determine recent hospital trends for ALI in England and to assess whether the introduction of the new treatment modalities had affected management. METHODS Routine hospital data covering ALI were provided by Hospital Episode Statistics for the years 2000 to 2011 and mortality data were obtained from the Office for National Statistics. All data were age standardised, reported per 100,000 of the population, and stratified by age band (60-74 years and ≥75 years) and sex. RESULTS Hospital admissions have risen significantly from 60.3 to 94.3 per 100,000 of the population, with an average annual increase of 6.2% since 2003 (p<0.001). The rise was greater in the older age group (from 79.9 to 134.4 vs 49.3 to 73.0) and yet procedures for ALI have shown a significant decrease since 2000 from 14.3 to 12.4 per 100,000 (p=0.013), independent of age and sex. Open embolectomy of the femoral artery remains the most common procedure and the proportion of endovascular interventions showed only a small increase. Only a few deaths were attributed to ALI (range: 95-150 deaths per year). CONCLUSIONS Hospital workload for ALI has increased, particularly since 2003, but this trend does not appear to have translated into increased endovascular or surgical activity.
Resumo:
With the increasing production and use of engineered nanoparticles it is crucial that their interaction with biological systems is understood. Due to the small size of nanoparticles, their identification and localization within single cells is extremely challenging. Therefore, various cutting-edge techniques are required to detect and to quantify metals, metal oxides, magnetic, fluorescent, as well as electron-dense nanoparticles. Several techniques will be discussed in detail, such as inductively coupled plasma atomic emission spectroscopy, flow cytometry, laser scanning microscopy combined with digital image restoration, as well as quantitative analysis by means of stereology on transmission electron microscopy images. An overview will be given regarding the advantages of those visualization/quantification systems, including a thorough discussion about limitations and pitfalls.
Resumo:
The visible reflectance spectrum of many Solar System bodies changes with changing viewing geometry for reasons not fully understood. It is often observed to redden (increasing spectral slope) with increasing solar phase angle, an effect known as phase reddening. Only once, in an observation of the martian surface by the Viking 1 lander, was reddening observed up to a certain phase angle with bluing beyond, making the reflectance ratio as a function of phase angle shaped like an arch. However, in laboratory experiments this arch-shape is frequently encountered. To investigate this, we measured the bidirectional reflectance of particulate samples of several common rock types in the 400–1000 nm wavelength range and performed ray-tracing simulations. We confirm the occurrence of the arch for surfaces that are forward scattering, i.e. are composed of semi-transparent particles and are smooth on the scale of the particles, and for which the reflectance increases from the lower to the higher wavelength in the reflectance ratio. The arch shape is reproduced by the simulations, which assume a smooth surface. However, surface roughness on the scale of the particles, such as the Hapke and van Horn (Hapke, B., van Horn, H. [1963]. J. Geophys. Res. 68, 4545–4570) fairy castles that can spontaneously form when sprinkling a fine powder, leads to monotonic reddening. A further consequence of this form of microscopic roughness (being indistinct without the use of a microscope) is a flattening of the disk function at visible wavelengths, i.e. Lommel–Seeliger-type scattering. The experiments further reveal monotonic reddening for reflectance ratios at near-IR wavelengths. The simulations fail to reproduce this particular reddening, and we suspect that it results from roughness on the surface of the particles. Given that the regolith of atmosphereless Solar System bodies is composed of small particles, our results indicate that the prevalence of monotonic reddening and Lommel–Seeliger-type scattering for these bodies results from microscopic roughness, both in the form of structures built by the particles and roughness on the surface of the particles themselves. It follows from the singular Viking 1 observation that the surface in front of the lander was composed of semi-transparent particles, and was smooth on the scale of the particle size.
Resumo:
Mechanical thrombectomy provides higher recanalization rates than intravenous or intra-arterial thrombolysis. Finally this has been shown to translate into improved clinical outcome in six multicentric randomized controlled trials. However, within cohorts the clinical outcomes may vary, depending on the endovascular techniques applied. Systems aiming mainly for thrombus fragmentation and lacking a protection against distal embolization have shown disappointing results when compared to recent stent-retriever studies or even to historical data on local arterial fibrinolysis. Procedure-related embolic events are usually graded as adverse events in interventional neuroradiology. In stroke, however, the clinical consequences of secondary emboli have so far mostly been neglected and attributed to progression of the stroke itself. We summarize the evolution of instruments and techniques for endovascular, image-guided, microneurosurgical recanalization in acute stroke, and discuss how to avoid procedure-related embolic complications.
Resumo:
Index tracking has become one of the most common strategies in asset management. The index-tracking problem consists of constructing a portfolio that replicates the future performance of an index by including only a subset of the index constituents in the portfolio. Finding the most representative subset is challenging when the number of stocks in the index is large. We introduce a new three-stage approach that at first identifies promising subsets by employing data-mining techniques, then determines the stock weights in the subsets using mixed-binary linear programming, and finally evaluates the subsets based on cross validation. The best subset is returned as the tracking portfolio. Our approach outperforms state-of-the-art methods in terms of out-of-sample performance and running times.