8 resultados para Laboratori

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Results from the nuclear recoil calibration of the XENON100 dark matter detector installed underground at the Laboratori Nazionali del Gran Sasso, Italy are presented. Data from measurements with an external AmB(241)e neutron source are compared with a detailed Monte Carlo simulation which is used to extract the energy-dependent charge-yield Q(y) and relative scintillation efficiency L-eff. A very good level of absolute spectral matching is achieved in both observable signal channels-scintillation S1 and ionization S2-along with agreement in the two-dimensional particle discrimination space. The results confirm the validity of the derived signal acceptance in earlier reported dark matter searches of the XENON100 experiment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present new experimental constraints on the elastic, spin-dependent WIMP-nucleon cross section using recent data from the XENON100 experiment, operated in the Laboratori Nazionali del Gran Sasso in Italy. An analysis of 224.6 live days x 34 kg of exposure acquired during 2011 and 2012 revealed no excess signal due to axial-vector WIMP interactions with Xe-129 and Xe-131 nuclei. This leads to the most stringent upper limits on WIMP-neutron cross sections for WIMP masses above 6 GeV/c(2), with a minimum cross section of 3.5 x 10(-40) cm(2) at a WIMP mass of 45 GeV/c(2), at 90% confidence level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

XENON is a dark matter direct detection project, consisting of a time projection chamber (TPC) filled with liquid xenon as detection medium. The construction of the next generation detector, XENON1T, is presently taking place at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. It aims at a sensitivity to spin-independent cross sections of 2 10-47 c 2 for WIMP masses around 50 GeV2, which requires a background reduction by two orders of magnitude compared to XENON100, the current generation detector. An active system that is able to tag muons and muon-induced backgrounds is critical for this goal. A water Cherenkov detector of ~ 10 m height and diameter has been therefore developed, equipped with 8 inch photomultipliers and cladded by a reflective foil. We present the design and optimization study for this detector, which has been carried out with a series of Monte Carlo simulations. The muon veto will reach very high detection efficiencies for muons (>99.5%) and showers of secondary particles from muon interactions in the rock (>70%). Similar efficiencies will be obtained for XENONnT, the upgrade of XENON1T, which will later improve the WIMP sensitivity by another order of magnitude. With the Cherenkov water shield studied here, the background from muon-induced neutrons in XENON1T is negligible.