109 resultados para LUNG-VOLUME-REDUCTION
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Lung volume reduction surgery (LVRS) has been proposed for patients with severe emphysema to improve dyspnoea and pulmonary function. It is unknown, however, whether prognosis and pulmonary function in these patients can be improved compared to conservative treatment. The effect of LVRS and conservative therapy were compared prospectively in 57 patients with emphysema, who fulfilled the standard criteria for LVRS. The patients were divided into two groups according to their own decision. Patients in group 1 (n=29, eight females, mean+/-SEM 58.8+/-1.7 yrs, forced expiratory volume in one second (FEV1) 27.6+/-1.3% of the predicted value) underwent LVRS. Patients in group 2 (n=28, five females, 58.5+/-1.8 yrs, FEV1 30.8+/-1.4% pred) preferred to postpone LVRS. There were no significant differences in lung function between the two groups at baseline; however, there was a tendency towards better functional status in the control group. The control group had a better modified Medical Research Council (MMRC) dyspnea score (3.1+/-0.15 versus 3.5+/-0.1, p<0.04). Model-based comparisons were used to estimate the differences between the two groups over 18 months. Significant improvements were observed in the LVRS group compared to the control group in FEV1, total lung capacity (TLC), Residual volume (RV), MMRC dyspnea score and 6-min walking distance on all follow up visits. The estimated difference in FEV1 was 33% (95% confidence interval 13-58%; p>0.0001), in TLC 12.9% (7.9-18.8%; p>0.0001), in RV 60.9% 32.6-89.2%; p>0.0001), in 6-min walking distance 230 m (138-322 m; p<0.002) and in MMRC dyspnoea score 1.17 (0.79-1.55; p<0.0001). In conclusion, lung volume reduction surgery is more effective than conservative treatment for the improvement of dyspnoea, lung function and exercise capacity in selected patients with severe emphysema.
Resumo:
BACKGROUND: We report mid-term results after 25 consecutive lung volume reduction operations (LVRS) for the treatment of severe dyspnea due to advanced emphysema. METHODS: Study design: patients were studied prospectively up to 12 months after surgery. Setting: preoperative evaluation, surgery and postoperative care took place in our university hospital. Patients: patient selection was based on severe dyspnea and airway obstruction despite optimal medical treatment, lung overinflation and completed rehabilitation programme. Patients with severe hypercarbia (PCO2>50 mmHg) were excluded. Nineteen rehabilitated patients who fulfilled our inclusion criteria but postponed or denied LVRS were followed up clinically. Interventions: LVRS was performed bilaterally in 22 patients (median sternotomy) and unilaterally in 3 patients (limited thoracotomy). Measures: Outcome was measured by dyspnea evaluation, 6-minute-walking distance and pulmonary function tests. RESULTS: Twelve months postoperatively dyspnea and mobility improved significantly (MRC score from 3.3+/-0.7 to 2.12+/-0.8, 6-min-walk from 251+/-190 to 477+/-189 m). These results were superior compared to the results of the conservatively treated patients. Significant improvement could also be documented in airway obstruction (FEV1 from 960+/-369 to 1438+/-610 ml) and overinflation (TLC from 133+/-14 to 118+/-21% predicted and RV from 280+/-56 to 186+/-59% predicted). CONCLUSIONS: LVRS is an effective and promising treatment option for selected patients with end-stage emphysema and could be offered as an alternative and / or bridge to lung transplantation.
Resumo:
OBJECTIVE: To report preliminary results with a new surgical method of treating terminal emphysema by bilateral reduction of lung volume. PATIENTS AND METHODS: In a prospective study, the results obtained with the first 20 consecutive patients (mean FEV1: 590 +/- 180 ml) who underwent operative reduction of lung volume were recorded. 19 of the 20 patients had required continuous oxygen supply. RESULTS: The patients were extubated 8.5 +/- 6 h postoperatively; thoracic drainage was removed after 9 +/- 6 days. The degree of dyspnoea was decreased in all patients (3.5 +/- 0.5 vs 0.5 +/- 0.1). Significant reduction of overinflation occurred soon after the operation (residual volume 273 +/- 125 to 201 +/- 107% of normal; total capacity from 142 +/- 18 to 109 +/- 22% of normal), as well as reduction in the degree of obstruction (FEV1 from 18 +/- 6 to 24 +/- 7% of normal; for each, P < 0.05). One patient died 3 weeks post-operatively of Candida infection. CONCLUSION: The method looks promising for the treatment of selected patients and may thus provide an alternative to lung transplantation.
Resumo:
BACKGROUND: Lung volume reduction (LVR) surgery is an effective and organ-preserving treatment option for patients suffering from severe dyspnea due to endstage emphysema. METHOD: Resection of functionally inactive lung parenchyma reduces over-inflation and restores the elastic recoil of the lungs. Thus it results in improvement of dyspnea, mobility and pulmonary function. Patient selection is crucial. Of simliar importance is pulmonary rehabilitation, as well as sufficient expertise in the treatment of endstage chronic respiratory failure. RESULTS AND CONCLUSION: The in-hospital morbidity and mortality after LVR are acceptable (0 to 5%) and the good results seem to last at least 18 to 24 months. LVR can be offered to selected patients either as an alternative or as bridge to lung transplantation.
Resumo:
Coronary artery disease is prevalent in patients who have severe emphysema and who are being considered for lung volume reduction surgery (LVRS). Significant valvular heart diseases may also coexist in these patients. Few thoracic surgeons have performed LVRS in patients who have severe cardiac diseases. Conversely, few cardiac surgeons have been willing to undertake major cardiac surgery in patients who have severe emphysema. This report reviews the evidence regarding combined cardiac surgery and LVRS to determine the optimal management strategy for patients who have severe emphysema and who are suitable for LVRS, but who also have coexisting significant cardiac diseases that are operable.
Resumo:
Pulmonary emphysema causes decrease in lung function due to irreversible dilatation of intrapulmonary air spaces, which is linked to high morbidity and mortality. Lung volume reduction (LVR) is an invasive therapeutical option for pulmonary emphysema in order to improve ventilation mechanics. LVR can be carried out by lung resection surgery or different minimally invasive endoscopical procedures. All LVR-options require mandatory preinterventional evaluation to detect hyperinflated dysfunctional lung areas as target structures for treatment. Quantitative computed tomography can determine the volume percentage of emphysematous lung and its topographical distribution based on the lung's radiodensity. Modern techniques allow for lobebased quantification that facilitates treatment planning. Clinical tests still play the most important role in post-interventional therapy monitoring, but CT is crucial in the detection of postoperative complications and foreshadows the method's high potential in sophisticated experimental studies. Within the last ten years, LVR with endobronchial valves has become an extensively researched minimally-invasive treatment option. However, this therapy is considerably complicated by the frequent occurrence of functional interlobar shunts. The presence of "collateral ventilation" has to be ruled out prior to valve implantations, as the presence of these extraanatomical connections between different lobes may jeopardize the success of therapy. Recent experimental studies evaluated the automatic detection of incomplete lobar fissures from CT scans, because they are considered to be a predictor for the existence of shunts. To date, these methods are yet to show acceptable results. KEY POINTS Today, surgical and various minimal invasive methods of lung volume reduction are in use. Radiological and nuclear medical examinations are helpful in the evaluation of an appropriate lung area. Imaging can detect periinterventional complications. Reduction of lung volume has not yet been conclusively proven to be effective and is a therapeutical option with little scientific evidence.
Resumo:
Infants with chronic lung disease (CLD) have a capacity to maintain functional lung volume despite alterations to their lung mechanics. We hypothesize that they achieve this by altering breathing patterns and dynamic elevation of lung volume, leading to differences in the relationship between respiratory muscle activity, flow and lung volume. Lung function and transcutaneous electromyography of the respiratory muscles (rEMG) were measured in 20 infants with CLD and in 39 healthy age-matched controls during quiet sleep. We compared coefficient of variations (CVs) of rEMG and the temporal relationship of rEMG variables, to flow and lung volume [functional residual capacity (FRC)] between these groups. The time between the start of inspiratory muscle activity and the resulting flow (tria)--in relation to respiratory cycle time--was significantly longer in infants with CLD. Although FRC had similar associations with tria and postinspiratory activity (corrected for respiratory cycle time), the CV of the diaphragmatic rEMG was lower in CLD infants (22.6 versus 31.0%, p = 0.030). The temporal relationship of rEMG to flow and FRC and the loss of adaptive variability provide additional information on coping mechanisms in infants with CLD. This technique could be used for noninvasive bedside monitoring of CLD.
Resumo:
BACKGROUND: Morphological changes in preterm infants with bronchopulmonary dysplasia (BPD) have functional consequences on lung volume, ventilation inhomogeneity and respiratory mechanics. Although some studies have shown lower lung volumes and increased ventilation inhomogeneity in BPD infants, conflicting results exist possibly due to differences in sedation and measurement techniques. METHODOLOGY/PRINCIPAL FINDINGS: We studied 127 infants with BPD, 58 preterm infants without BPD and 239 healthy term-born infants, at a matched post-conceptional age of 44 weeks during quiet natural sleep according to ATS/ERS standards. Lung function parameters measured were functional residual capacity (FRC) and ventilation inhomogeneity by multiple breath washout as well as tidal breathing parameters. Preterm infants with BPD had only marginally lower FRC (21.4 mL/kg) than preterm infants without BPD (23.4 mL/kg) and term-born infants (22.6 mL/kg), though there was no trend with disease severity. They also showed higher respiratory rates and lower ratios of time to peak expiratory flow and expiratory time (t(PTEF)/t(E)) than healthy preterm and term controls. These changes were related to disease severity. No differences were found for ventilation inhomogeneity. CONCLUSIONS: Our results suggest that preterm infants with BPD have a high capacity to maintain functional lung volume during natural sleep. The alterations in breathing pattern with disease severity may reflect presence of adaptive mechanisms to cope with the disease process.
Resumo:
OBJECTIVE Endoscopic lung volume reduction (ELVR) with valves has been shown to improve COPD patients with severe emphysema. However, a major complication is pneumothoraces, occurring typically soon after valve implantation, with severe consequences if not managed promptly. Based on the knowledge that strain activity is related to a higher risk of pneumothoraces, we asked whether modifying post-operative medical care with the inclusion of strict short-term limitation of strain activity is associated with a lower incidence of pneumothorax. METHODS Seventy-two (72) emphysematous patients without collateral ventilation were treated with bronchial valves and included in the study. Thirty-two (32) patients received standard post-implantation medical management (Standard Medical Care (SMC)), and 40 patients received a modified medical care that included an additional bed rest for 48 hours and cough suppression, as needed (Modified Medical Care (MMC)). RESULTS The baseline characteristics were similar for the two groups, except there were more males in the SMC cohort. Overall, ten pneumothoraces occurred up to four days after ELVR, eight pneumothoraces in the SMC, and only two in the MMC cohorts (p=0.02). Complicated pneumothoraces and pneumothoraces after upper lobe treatment were significantly lower in MMC (p=0.02). Major clinical outcomes showed no significant differences between the two cohorts. CONCLUSIONS In conclusion, modifying post-operative medical care to include bed rest for 48 hours after ELVR and cough suppression, if needed, might reduce the incidence of pneumothoraces. Prospective randomized studies with larger numbers of well-matched patients are needed to confirm the data.
Resumo:
OBJECTIVE To evaluate the effects of a 60% vitamin A deficiency (VAD) on the two postnatal stages of lung development: alveolarization and microvascular maturation. Lungs from deficient rats were compared to age-matched controls. STUDY DESIGN Starting at 3 weeks before mating, female rats were maintained under a diet lacking vitamin A. Due to the slow depletion of the vitamin A liver stores the pregnant rats carried to term and delivered pups under mild VAD conditions. Mothers and offspring were then kept under the same diet what resulted in a mean reduction of vitamin A plasma concentration of about 60% vs. controls during the whole experimental period. Pups were sacrificed on days 4, 10 and 21 and their lungs fixed and analyzed by means of a combined morphologic and morphometric investigation at light and electron microscopic levels. RESULTS During the whole experiment, body weights of VAD animals were lower than controls with a significant decrease on day 10. On days 4, 10 and 21 the pulmonary structure was in a comparable gross morphologic state in both groups. Despite this morphologic normality, quantitative alterations in some functional parameters could be detected. On day 4, lung volume and the volume and surface area of air spaces were decreased, while the arithmetic mean barrier thickness and type 2 pneumocyte volume were increased in the VAD group. On day 21, some changes were again manifest mainly consisting in an augmentation of the vascularization and a decrease in interstitial volume in deficient animals. CONCLUSIONS Mild VAD causes no gross disturbances in the postnatal phases of lung development in rats. However, a body weight-related transient retardation of lung maturation was detectable in the first postnatal week. At 3 weeks, the VAD lungs showed a more mature vascular system substantiated by an increase in volume of both capillary volume and the large non-parenchymal vessels. In view of these quantitative alterations, we suspect that mild VAD deregulates the normal phases of body and lung growth, but does not induce serious functional impairments.
Resumo:
Purpose Physiological respiratory motion of tumors growing in the lung can be corrected with respiratory gating when treated with radiotherapy (RT). The optimal respiratory phase for beam-on may be assessed with a respiratory phase optimizer (RPO), a 4D image processing software developed with this purpose. Methods and Materials Fourteen patients with lung cancer were included in the study. Every patient underwent a 4D-CT providing ten datasets of ten phases of the respiratory cycle (0-100% of the cycle). We defined two morphological parameters for comparison of 4D-CT images in different respiratory phases: tumor-volume to lung-volume ratio and tumor-to-spinal cord distance. The RPO automatized the calculations (200 per patient) of these parameters for each phase of the respiratory cycle allowing to determine the optimal interval for RT. Results Lower lobe lung tumors not attached to the diaphragm presented with the largest motion with breathing. Maximum inspiration was considered the optimal phase for treatment in 4 patients (28.6%). In 7 patients (50%), however, the RPO showed a most favorable volumetric and spatial configuration in phases other than maximum inspiration. In 2 cases (14.4%) the RPO showed no benefit from gating. This tool was not conclusive in only one case. Conclusions The RPO software presented in this study can help to determine the optimal respiratory phase for gated RT based on a few simple morphological parameters. Easy to apply in daily routine, it may be a useful tool for selecting patients who might benefit from breathing adapted RT.
Resumo:
OBJECTIVES: One main problem occurring after bone grafting is resorption, leading to insufficient bone volume and quality, and may subsequently cause dental implant failure. Comparison of graft volume and bone density of iliac crest and calvarial transplants determined by animal studies demonstrates significantly lower resorption of bone grafts harvested from the skull. This paper is the first clinical study evaluating bone volume and density changes of calvarial split bone grafts after alveolar ridge reconstruction. MATERIAL AND METHODS: Bone volume and density were determined using CT scans and the software program Dicom Works in a total of 51 calvarial grafts after alveolar ridge augmentation in 15 patients. CT scans were taken in all 15 patients immediately after grafting (T0) and before implantation after a postoperative period of 6 months (T1). In five patients (26 calvarial grafts), a 1-year follow-up was performed (T2). RESULTS: A mean volume reduction of 16.2% at T1 (15 patients) and 19.2% at T2 (five patients) was observed. Bone density was high--about 1000 Hounsfield units--and did not change during the 1-year period. At the time of implantation, 41 transplants were classified as quality 1 bone and 10 as quality 2-3 bone. Grafting area and the technique used for grafting (inlay or onlay graft) did not affect the postoperative bone volume reduction. Generalized osteoporosis did not increase the resorption rate of calvarial transplants. CONCLUSION: Based on these findings, calvarial split bone grafts are a promising alternative for alveolar ridge reconstruction in dental implantology.
Resumo:
Recently, our study group demonstrated the usefulness of ultrasonographic guidance in ilioinguinal/iliohypogastric nerve blocks in children. As a consequence, we designed a follow-up study to evaluate the optimal volume of local anesthetic for this regional anesthetic technique. Using a modified step-up-step-down approach, with 10 children in each study group, a starting dose of 0.2 mL/kg of 0.25% levobupivacaine was administered to perform an ilioinguinal/iliohypogastric nerve block under ultrasonographic guidance. After each group of 10 patients, the results were analyzed, and if all blocks were successful, the volume of local anesthetic was decreased by 50%, and a further 10 patients were enrolled into the study. Failure to achieve a 100% success rate within a group subjected patients to an automatic increase of half the previous volume reduction to be used in the subsequent group. Using 0.2 and 0.1 mL/kg of 0.25% levobupivacaine, the success rate was 100%. With a volume of 0.05 mL/kg of 0.25% levobupivacaine, 4 of 10 children received additional analgesia because of an inadequate block. Therefore, according to the protocol, the amount was increased to 0.075 mL/kg of 0.25% levobupivacaine, where the success rate was again 100%. We conclude that ultrasonographic guidance for ilioinguinal/iliohypogastric nerve blocks in children allowed a reduction of the volume of local anesthetic to 0.075 mL/kg.