7 resultados para LINKING BIOLOGY

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cross-linking platelet GPIb with the snake C-type lectin echicetin provides a specific technique for activation via this receptor. This allows GPIb-dependent mechanisms to be studied without the necessity for shear stress-induced binding of von Willebrand factor or primary alpha(IIb)beta(3) involvement. We already showed that platelets are activated, including tyrosine phosphorylation, by echicetin-IgMkappa-induced GPIb cross-linking. We now investigate the mechanism further and demonstrate that platelets, without modulator reagents, spread directly on an echicetin-coated surface, by a GPIb-specific mechanism, causing exocytosis of alpha-granule markers (P-selectin) and activation of alpha(IIb)beta(3). This spreading requires actin polymerization and release of internal calcium stores but is not dependent on external calcium nor on src family tyrosine kinases. Cross-linking of GPIb complex molecules on platelets, either in suspension or via specific surface attachment, is sufficient to induce platelet activation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aquatic toxicology is facing the challenge to assess the impact of complex mixtures of compounds on diverse biological endpoints. So far, ecotoxicology focuses mainly on apical endpoints such as growth, lethality and reproduction, but does not consider sublethal toxic effects that may indirectly cause ecological effects. One such sublethal effect is toxicant-induced impairment of neurosensory functions which will affect important behavioural traits of exposed organisms. Here, we critically review the mechanosensory lateral line (LL) system of zebrafish as a model to screen for chemical effects on neurosensory function of fish in particular and vertebrates in general. The LL system consists of so-called neuromasts, composed of centrally located sensory hair cells, and surrounding supporting cells. The function of neuromasts is the detection of water movements that is essential for the fish's ability to detect prey, to escape predator, to socially interact or to show rheotactic behaviour. Recent advances in the study of these organs provided researchers with a broad area of molecular tools for easy and rapid detection of neuromasts dysfunction and/or disturbed development. Further, genes involved in neuromasts differentiation have been identified using auditory/mechanosensory mutants and morphants. A number of environmental toxicants including metals and pharmaceuticals have been shown to affect neuromasts development and/or function. The use of the LL organ for toxicological studies offers the advantage to integrate the available profound knowledge on developmental biology of the neuromasts with the study of chemical toxicity. This combination may provide a powerful tool in environmental risk assessment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural and functional connectivity are intrinsic properties of the human brain and represent the amount of cognitive capacities of individual subjects. These connections are modulated due to development, learning, and disease. Momentary adaptations in functional connectivity alter the structural connections, which in turn affect the functional connectivity. Thus, structural and functional connectivity interact on a broad timescale. In this study, we aimed to explore distinct measures of connectivity assessed by functional magnetic resonance imaging and diffusion tensor imaging and their association to the dominant electroencephalogram oscillatory property at rest: the individual alpha frequency (IAF). We found that in 21 healthy young subjects, small intraindividual temporal IAF fluctuations were correlated to increased blood oxygenation level-dependent signal in brain areas associated to working memory functions and to the modulation of attention. These areas colocalized with functionally connected networks supporting the respective functions. Furthermore, subjects with higher IAF show increased fractional anisotropy values in fascicles connecting the above-mentioned areas and networks. Hence, due to a multimodal approach a consistent functionally and structurally connected network related to IAF was observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

At birth, the mammalian lung is still immature. The alveoli are not yet formed and the interairspace walls contain two capillary layers which are separated by an interstitial core. After alveolarization (first 2 postnatal weeks in rats) the alveolar septa mature: their capillary layers merge, the amount of connective tissue decreases, and the mature lung parenchyma is formed (second and third week). During the first 3 wk of life the role of tissue transglutaminase (tTG) was studied in rat lung by immunostaining of cryostat and paraffin sections, by Northern and Western blotting, and by a quantitative determination of gamma-glutamyl-epsilon-lysine. While enzyme activity and intracellular tTG were already present before term, the enzyme product (gamma-glutamyl-epsilon-lysine-crosslink) and extracellular tTG appeared between postnatal days 10 and 19 in the lung parenchyma. In large blood vessels and large airways, which mature earlier than the parenchyma, both the enzyme product and extracellular tTG had already appeared at the end of the first postnatal week. We conclude that tTG is expressed and externalized into the extracellular matrix of lung shortly before maturation of an organ area. Because tTG covalently and irreversibly crosslinks extracellular matrix proteins, we hypothesize that it may prevent or delay further remodeling of basement membranes and may stabilize other extracellular components, such as microfibrils.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND & AIMS The liver performs a panoply of complex activities coordinating metabolic, immunologic and detoxification processes. Despite the liver's robustness and unique self-regeneration capacity, viral infection, autoimmune disorders, fatty liver disease, alcohol abuse and drug-induced hepatotoxicity contribute to the increasing prevalence of liver failure. Liver injuries impair the clearance of bile acids from the hepatic portal vein which leads to their spill over into the peripheral circulation where they activate the G-protein-coupled bile acid receptor TGR5 to initiate a variety of hepatoprotective processes. METHODS By functionally linking activation of ectopically expressed TGR5 to an artificial promoter controlling transcription of the hepatocyte growth factor (HGF), we created a closed-loop synthetic signalling network that coordinated liver injury-associated serum bile acid levels to expression of HGF in a self-sufficient, reversible and dose-dependent manner. RESULTS After implantation of genetically engineered human cells inside auto-vascularizing, immunoprotective and clinically validated alginate-poly-(L-lysine)-alginate beads into mice, the liver-protection device detected pathologic serum bile acid levels and produced therapeutic HGF levels that protected the animals from acute drug-induced liver failure. CONCLUSIONS Genetically engineered cells containing theranostic gene circuits that dynamically interface with host metabolism may provide novel opportunities for preventive, acute and chronic healthcare. LAY SUMMARY Liver diseases leading to organ failure may go unnoticed as they do not trigger any symptoms or significant discomfort. We have designed a synthetic gene circuit that senses excessive bile acid levels associated with liver injuries and automatically produces a therapeutic protein in response. When integrated into mammalian cells and implanted into mice, the circuit detects the onset of liver injuries and coordinates the production of a protein pharmaceutical which prevents liver damage.