28 resultados para LGM

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the important role of the Central Andes (15–30° S) for climate reconstruction, knowledge about the Quaternary glaciation is very limited due to the scarcity of organic material for radiocarbon dating. We applied 10Be surface exposure dating (SED) on 22 boulders from moraines in the Cordon de Doña Rosa, Northern/Central Chile (~31° S). The results show that several glacial advances in the southern Central Andes occurred during the Late Glacial between ~14.7±1.5 and 11.6±1.2 ka. A much more extensive glaciation is dated to ~32±3 ka, predating the temperature minimum of the global LGM (Last Glacial Maximum: ~20 ka). Reviewing these results in the paleoclimatic context, we conclude that the Late Glacial advances were most likely caused by an intensification of the tropical circulation and a corresponding increase in summer precipitation. High-latitude temperatures minima, e.g. the Younger Dryas (YD) and the Antarctic Cold Reversal (ACR) may have triggered individual advances, but current systematic exposure age uncertainties limit precise correlations. The absence of LGM moraines indicates that moisture advection was too limited to allow significant glacial advances at ~20 ka. The tropical circulation was less intensive despite the maximum in austral summer insolation. Winter precipitation was apparently also insufficient, although pollen and marine studies indicate a northward shift of the westerlies at that time. The dominant pre-LGM glacial advances in Northern/Central Chile at ~32 ka required lower temperatures and increased precipitation than today. We conclude that the westerlies were more intense and/or shifted equatorward, possibly due to increased snow and ice cover at higher southern latitudes coinciding with a minimum of insolation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface exposure dating (SED) is an innovative tool already being widely applied for moraine dating and for Late Quaternary glacier and climate reconstruction. Here we present exposure ages of 28 boulders from the Cordillera Real and the Cordillera Cochabamba, Bolivia. Our results indicate that the local Last Glacial Maximum (LGM) in the Eastern Cordilleras occurred at ~22–25 ka and was thus synchronous to the global temperature minimum. We were also able to date several Late Glacial moraines to ~11–13 ka, which likely document lower temperatures and increased precipitation ("Coipasa" humid phase). Additionally, we recognize the existence of older Late Glacial moraines re-calculated to ~15 ka from published cosmogenic nuclide data. Those may coincide with the cold Heinrich 1 event in the North Atlantic region and the pronounced "Tauca" humid phase. We conclude that (i) exposure ages in the tropical Andes may have been overestimated so far due to methodological uncertainties, and (ii) although precipitation plays an important role for glacier mass balances in the tropical Andes, it becomes the dominant forcing for glaciation only in the drier and thus more precipitation-sensitive regions farther west and south.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We measured δ17O and δ18O in two Antarctic ice cores at EPICA Dome C (EDC) and TALDICE (TD), respectively and computed 17O-excess with respect to VSMOW. The comparison of our 17O-excess data with the previous record obtained at Vostok (Landais et al., 2008) revealed differences up to 35 ppm in 17O-excess mean level and evolution for the three sites. Our data showed that the large increase depicted at Vostok (20 ppm) during the last deglaciation, is a regional and not a general pattern in the temporal distribution of 17O-excess in East Antarctica. The EDC data display an increase of 13 ppm, whereas the TD data show no significant variation from the Last Glacial Maximum (LGM) to the Early Holocene (EH). Lagrangian moisture source diagnostic revealed very different source regions for Vostok and EDC compared to TD. These findings combined with the results of a sensitivity analysis, using a Rayleigh-type isotopic model, suggest that relative humidity (RH) at the oceanic source region (OSR) are a determining factor for the spatial differences of 17O-excess in East Antarctica. However, 17O-excess in remote sites of continental Antarctica (e.g. Vostok) may be highly sensitive to local effects. Hence, we consider 17O-excess in coastal East Antarctic ice cores (TD) to be more reliable as a proxy for RH at the OSR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The latitudinal position of the southern westerlies has been suggested to be a key parameter for the climate on Earth. According to the general notion, the southern westerlies were shifted equatorward during the global Last Glacial Maximum (LGM: ~24–18 ka), resulting in reduced deep ocean ventilation, accumulation of old dissolved carbon, and low atmospheric CO2 concentrations. In order to test this notion, we applied surface exposure dating on moraines in the southern Central Andes, where glacial mass balances are particularly sensitive to changes in precipitation, i.e. to the latitudinal position of the westerlies. Our results provide robust evidence that the maximum glaciation occurred already at ~39 ka, significantly predating the global LGM. This questions the role of the westerlies for atmospheric CO2, and it highlights our limited understanding of the forcings of atmospheric circulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We measured δ17O and δ18O in two Antarctic ice cores at EPICA Dome C (EDC) and TALDICE (TD), respectively, and computed 17O-excess with respect to VSMOW. The comparison of our 17O-excess data with the previous record obtained at Vostok (Landais et al., 2008a) revealed differences up to 35 ppm in 17O-excess mean level and evolution for the three sites. Our data show that the large increase depicted at Vostok (20 ppm) during the last deglaciation is a regional and not a general pattern in the temporal distribution of 17O-excess in East Antarctica. The EDC data display an increase of 12 ppm, whereas the TD data show no significant variation from the Last Glacial Maximum (LGM) to the Early Holocene (EH). A Lagrangian moisture source diagnostic revealed very different source regions for Vostok and EDC compared to TD. These findings combined with the results of a sensitivity analysis, using a Rayleigh-type isotopic model, suggest that normalized relative humidity (RHn) at the oceanic source region (OSR) is a determining factor for the spatial differences of 17O-excess in East Antarctica. However, 17O-excess in remote sites of continental Antarctica (e.g. Vostok) may be highly sensitive to local effects. Hence, we consider 17O-excess in coastal East Antarctic ice cores (TD) to be more reliable as a proxy for RHn at the OSR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A glacier–climate model was used to calculate climatic conditions in a test site on the east Andean slope around Cochabamba (17°S, Bolivia) for the time of the maximum Late Pleistocene glaciation. Results suggest a massive temperature reduction of about − 6.4 °C (+ 1.4/− 1.3 °C), combined with annual precipitation rates of about 1100 mm (+ 570 mm/− 280 mm). This implies no major change in annual precipitation compared with today. Summer precipitation was the source for the humidity in the past, as is the case today. This climate scenario argues for a maximum advance of the paleo-glaciers in the eastern cordillera during the global Last Glacial Maximum (LGM, 20 ka BP), which is confirmed by exposure age dates. In a synthesized view over the central Andes, the results point to an increased summer precipitation-driven Late Glacial (15–10 ka BP) maximum advance in the western part of the Altiplano (18°S–23°S), a temperature-driven maximum advance during full glacial times (LGM) in the eastern cordillera, and a pre- and post-LGM (32 ka BP/14 ka BP) maximum advance around 30°S related to increased precipitation and reduced temperature on the western slope of the Andes. The results indicate the importance of understanding the seasonality and details of the mass balance–climate interaction in order to disentangle drivers for the observed regionally asynchronous past glaciations in the central Andes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present distribution of freshwater fish in the Alpine region has been strongly affected by colonization events occurring after the last glacial maximum (LGM), some 20,000 years ago. We use here a spatially explicit simulation framework to model and better understand their colonization dynamics in the Swiss Rhine basin. This approach is applied to the European bullhead (Cottus gobio), which is an ideal model organism to study fish past demographic processes since it has not been managed by humans. The molecular diversity of eight sampled populations is simulated and compared to observed data at six microsatellite loci under an approximate Bayesian computation framework to estimate the parameters of the colonization process. Our demographic estimates fit well with current knowledge about the biology of this species, but they suggest that the Swiss Rhine basin was colonized very recently, after the Younger Dryas some 6600 years ago. We discuss the implication of this result, as well as the strengths and limits of the spatially explicit approach coupled to the approximate Bayesian computation framework.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Extensive glaciers repeatedly occupied the northern Alpine Foreland during the Pleistocene and left a strongly glacially overprinted low slope landscape. Only few islands appeared as nunataks standing above the surface of the large piedmont glacier lobes. These nunatak areas kept their original shape, manifested in steep catchments with mean slopes up to 33 . Even though not glaciated, these catchments where significantly affected by base-level changes occurring as a consequence of phases of glacier advances and retreats. Both domains, the glacially eroded and non-eroded, are therefore prone to different mechanisms and time-scales of fluvial and colluvial re-adjustment. In this study we investigate these effects by exploring the spatial distribution and magnitude of denudation in the Hörnli region of the eastern Swiss Alpine Foreland in the present Interglacial. The area represents both domains in a relatively small area with largely uniform tectonic, lithologic and climatic conditions. The differences in Holocene andscape evolution are investigated using topographic analyses and catchment-averaged denudation rates derived from 10Be concentrations in fluvial quartz sand. We find that in formerly non-glaciated, fluvially dominated catchments close hillslope-channel coupling prevails and that these catchments yield high average denudation rates of 350 mm/ka. Glacially overprinted catchments yielded catchment-wide denudation rates an order of magnitude lower. These low denudation rates are hypothesized to be the consequence of both (i) a dominance of slow hillslope processes and (ii) admixture of high concentration, pre-LGM glacial sediment. This suggests that a) a careful field investigation must accompany the denudation rate studies and b) that the concept of area-weighted cosmogenic nuclide denudation rates must be considered in light of the predominant catchment processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In many regions, tectonic uplift is the main driver of erosion over million-year (Myr) timescales, but climate changes can markedly affect the link between tectonics and erosion, causing transient variations in erosion rates. Here we study the driving forces of millennial to Myr-scale erosion rates in the French Western Alps, as estimated from in situ produced cosmogenic 10Be and a newly developed approach integrating detrital and bedrock apatite fission-track thermochronology. Millennial erosion rates from 10Be analyses vary between ~0.27 and ~1.33 m/kyr, similar to rates measured in adjacent areas of the Alps. Significant positive correlations of millennial erosion rates with geomorphic measures, in particular with the LGM ice thickness, reveal a strong transient morphological and erosional perturbation caused by repeated Quaternary glaciations. The perturbation appears independent of Myr-scale uplift and erosion gradients, with the effect that millennial erosion rates exceed Myr-scale erosion rates only in the internal Alps where the latter are low (<0.4 km/Myr). These areas, moreover, exhibit channels that clearly plot above a general linear positive relation between Myr-scale erosion rates and normalized steepness index. Glacial erosion acts irrespective of rock uplift and thus not only leads to an overall increase in erosion rates but also regulates landscape morphology and erosion rates in regions with considerable spatial gradients in Myr-scale tectonic uplift. Our study demonstrates that climate change, e.g., through occurrence of major glaciations, can markedly perturb landscape morphology and related millennial erosion rate patterns, even in regions where Myr-scale erosion rates are dominantly controlled by tectonics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, we document glacial deposits and reconstruct the glacial history in the Karagöl valley system in the eastern Uludağ in northwestern Turkey based on 42 cosmogenic 10Be exposure ages from boulders and bedrock. Our results suggest the Last Glacial Maximum (LGM) advance prior to 20.4 ± 1.2 ka and at least three re-advances until 18.6 ± 1.2 ka during the global LGM within Marine Isotope Stage-2. In addition, two older advances of unknown age are geomorphologically well constrained, but not dated due to the absence of suitable boulders. Glaciers advanced again two times during the Lateglacial. The older is exposure dated to not later than 15.9 ± 1.1 ka and the younger is attributed to the Younger Dryas (YD) based on field evidence. The timing of the glaciations in the Karagöl valley correlates well with documented archives in the Anatolian and Mediterranean mountains and the Alps. These glacier fluctuations may be explained by the change in the atmospheric circulation pattern during the different phases of North Atlantic Oscillation (NAO) winter indices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anatolia is situated in the Eastern Mediterranean region between 36 – 42N and 26 – 45E. The geological records of paleoglaciations in the high terrains of Anatolia are key archives to quantify paleoclimate change in the Eastern Mediterranean area. The climate of the Eastern Mediterranean region is influenced by three main atmospheric systems: the main middle to high latitude westerlies, the mid-latitude subtropical high-pressure systems, and the monsoon climate. Glacial geological studies in Turkey have started in the late 19th century. Glacial deposits are found mainly in the eastern, northeastern and southern part of the Anatolian Peninsula. Anatolia is the fundamental element to understand the interactions between paleoenvironment, climatic variations, and development of the human societies. As the Taurus and Black Sea Mountains are sensitively situated for the paleoclimatic reconstructions, a chronostratigraphic framework on the paleoglaciation should be elaborated. The timing of the Last Glacial Maximum (LGM) in Anatolia is still unknown. Our first results from Kavron Valley (Kaçkar Mountains, NE Turkey) are encouraging for the reconstruction of paleoglaciations in Turkey and related paleoclimatological interpretations although it is presently difficult to pinpoint the classical Last Glacial Maximum – Younger Dryas – Little Ice Age moraine sequences in the field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent studies have identified relationships between landscape form, erosion and climate in regions of landscape rejuvenation, associated with increased denudation. Most of these landscapes are located in non-glaciated mountain ranges and are characterized by transient geomorphic features. The landscapes of the Swiss Alps are likewise in a transient geomorphic state as seen by multiple knickzones. In this mountain belt, the transient state has been related to erosional effects during the Late Glacial Maximum (LGM). Here, we focus on the catchment scale and categorize hillslopes based on erosional mechanisms, landscape form and landcover. We then explore relationships of these variables to precipitation and extent of LGM glaciers to disentangle modern versus palaeo controls on the modern shape of the Alpine landscape. We find that in grasslands, the downslope flux of material mainly involves unconsolidated material through hillslope creep, testifying a transport-limited erosional regime. Alternatively, strength-limited hillslopes, where erosion is driven by bedrock failure, are covered by forests and/or expose bedrock, and they display oversteepened hillslopes and channels. There, hillslope gradients and relief are more closely correlated with LGM ice occurrence than with precipitation or the erodibility of the underlying bedrock. We relate the spatial occurrence of the transport- and strength-limited process domains to the erosive effects of LGM glaciers. In particular, strength-limited, rock dominated basins are situated above the equilibrium line altitude (ELA) of the LGM, reflecting the ability of glaciers to scour the landscape beyond threshold slope conditions. In contrast, transport-limited, soil-mantled landscapes are common below the ELA. Hillslopes covered by forests occupy the elevations around the ELA and are constrained by the tree line. We conclude that the current erosional forces at work in the Central Alps are still responding to LGM glaciation, and that the modern climate has not yet impacted on the modern landscape.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The bedrock topography beneath the Quaternary cover provides an important archive for the identification of erosional processes during past glaciations. Here, we combined stratigraphic investigations of more than 40,000 boreholes with published data to generate a bedrock topography model for the entire plateau north of the Swiss Alps including the valleys within the mountain belt. We compared the bedrock map with data about the pattern of the erosional resistance of Alpine rocks to identify the controls of the lithologic architecture on the location of overdeepenings. We additionally used the bedrock topography map as a basis to calculate the erosional potential of the Alpine glaciers, which was related to the thickness of the LGM ice. We used these calculations to interpret how glaciers, with support by subglacial meltwater under pressure, might have shaped the bedrock topography of the Alps. We found that the erosional resistance of the bedrock lithology mainly explains where overdeepenings in the Alpine valleys and the plateau occur. In particular, in the Alpine valleys, the locations of overdeepenings largely overlap with areas where the underlying bedrock has a low erosional resistance, or where it was shattered by faults. We also found that the assignment of two end-member scenarios of erosion, related to glacial abrasion/plucking in the Alpine valleys, and dissection by subglacial meltwater in the plateau, may be adequate to explain the pattern of overdeepenings in the Alpine realm. This most likely points to the topographic controls on glacial scouring. In the Alps, the flow of LGM and previous glaciers were constrained by valley flanks, while ice flow was mostly divergent on the plateau where valley borders are absent. We suggest that these differences in landscape conditioning might have contributed to the contrasts in the formation of overdeepenings in the Alpine valleys and the plateau.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of northern high-latitude peatlands played an important role in the carbon (C) balance of the land biosphere since the Last Glacial Maximum (LGM). At present, carbon storage in northern peatlands is substantial and estimated to be 500 ± 100 Pg C (1 Pg C = 1015 g C). Here, we develop and apply a peatland module embedded in a dynamic global vegetation and land surface process model (LPX-Bern 1.0). The peatland module features a dynamic nitrogen cycle, a dynamic C transfer between peatland acrotelm (upper oxic layer) and catotelm (deep anoxic layer), hydrology- and temperature-dependent respiration rates, and peatland specific plant functional types. Nitrogen limitation down-regulates average modern net primary productivity over peatlands by about half. Decadal acrotelm-to-catotelm C fluxes vary between −20 and +50 g C m−2 yr−1 over the Holocene. Key model parameters are calibrated with reconstructed peat accumulation rates from peat-core data. The model reproduces the major features of the peat core data and of the observation-based modern circumpolar soil carbon distribution. Results from a set of simulations for possible evolutions of northern peat development and areal extent show that soil C stocks in modern peatlands increased by 365–550 Pg C since the LGM, of which 175–272 Pg C accumulated between 11 and 5 kyr BP. Furthermore, our simulations suggest a persistent C sequestration rate of 35–50 Pg C per 1000 yr in present-day peatlands under current climate conditions, and that this C sink could either sustain or turn towards a source by 2100 AD depending on climate trajectories as projected for different representative greenhouse gas concentration pathways.