24 resultados para LATTICE ENERGY

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We review lattice results related to pion, kaon, D- and B-meson physics with the aim of making them easily accessible to the particle-physics community. More specifically, we report on the determination of the lightquark masses, the form factor f+(0), arising in semileptonic K → π transition at zero momentum transfer, as well as the decay-constant ratio fK / fπ of decay constants and its consequences for the CKM matrix elements Vus and Vud. Furthermore, we describe the results obtained on the lattice for some of the low-energy constants of SU(2)L × SU(2)R and SU(3)L×SU(3)R Chiral Perturbation Theory and review the determination of the BK parameter of neutral kaon mixing. The inclusion of heavy-quark quantities significantly expands the FLAG scope with respect to the previous review. Therefore, we focus here on D- and B-meson decay constants, form factors, and mixing parameters, since these are most relevant for the determination of CKM matrix elements and the global CKM unitarity-triangle fit. In addition we review the status of lattice determinations of the strong coupling constant αs.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the 2d XY Model with topological lattice actions, which are invariant against small deformations of the field configuration. These actions constrain the angle between neighbouring spins by an upper bound, or they explicitly suppress vortices (and anti-vortices). Although topological actions do not have a classical limit, they still lead to the universal behaviour of the Berezinskii-Kosterlitz-Thouless (BKT) phase transition — at least up to moderate vortex suppression. In the massive phase, the analytically known Step Scaling Function (SSF) is reproduced in numerical simulations. However, deviations from the expected universal behaviour of the lattice artifacts are observed. In the massless phase, the BKT value of the critical exponent ηc is confirmed. Hence, even though for some topological actions vortices cost zero energy, they still drive the standard BKT transition. In addition we identify a vortex-free transition point, which deviates from the BKT behaviour.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We review the determination of the strong coupling αs from the comparison of the perturbative expression for the Quantum Chromodynamics static energy with lattice data. Here, we collect all the perturbative expressions needed to evaluate the static energy at the currently known accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We compare lattice data for the short-distance part of the static energy in 21 flavor quantum chromodynamics (QCD) with perturbative calculations, up to next-to-next-to-next-to leading-logarithmic accuracy. We show that perturbation theory describes very well the lattice data at short distances, and exploit this fact to obtain a determination of the product of the lattice scale r0 with the QCD scale ΛMS. With the input of the value of r0, this provides a determination of the strong coupling αs at the typical distance scale of the lattice data. We obtain αs1.5  GeV0.3260.019, which provides a novel determination of αs with three-loop accuracy (including resummation of the leading ultrasoft logarithms), and constitutes one of the few low-energy determinations of αs available. When this value is evolved to the Z-mass scale MZ, it corresponds to αsMZ0.11560.00220.0021.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We obtain a determination of the strong coupling as in quantum chromodynamics, by comparing perturbative calculations for the short-distance part of the static energy with lattice computations. Our result reads as (1.5GeV) = 0.326±0.019, and when evolved to the scale MZ (the Z-boson mass) it corresponds to as (MZ) = 0.1156+0.0021 −0.0022.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Comparing perturbative calculations with a lattice computation of the static energy in quantum chromodynamics at short distances, we obtain a determination of the strong coupling αS. Our determination is performed at a scale of around 1.5 GeV (the typical distance scale of the lattice data) and, when evolved to the Z-boson mass scale MZ, it corresponds to .