21 resultados para LACTIS
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Regulation and structure of YahD, a copper-inducible / serine hydrolase of Lactococcus lactis IL1403
Resumo:
Lactococcus lactis IL1403 is a lactic acid bacterium that is used widely for food fermentation. Copper homeostasis in this organism chiefly involves copper secretion by the CopA copper ATPase. This enzyme is under the control of the CopR transcriptional regulator. CopR not only controls its own expression and that of CopA, but also that of an additional three operons and two monocistronic genes. One of the genes under the control of CopR, yahD, encodes an α/β-hydrolase. YahD expression was induced by copper and cadmium, but not by other metals or oxidative or nitrosative stress. The three-dimensional structure of YahD was determined by X-ray crystallography to a resolution of 1.88 Å. The protein was found to adopt an α/β-hydrolase fold with the characteristic Ser-His-Asp catalytic triad. Functional testing of YahD for a wide range of substrates for esterases, lipases, epoxide hydrolases, phospholipases, amidases and proteases was, however, unsuccessful. A copper-inducible serine hydrolase has not been described previously and YahD appears to be a new functional member of this enzyme family.
Resumo:
In Lactococcus lactis IL1403, 14 genes are under the control of the copper-inducible CopR repressor. This so-called CopR regulon encompasses the CopR regulator, two putative CPx-type copper ATPases, a copper chaperone, and 10 additional genes of unknown function. We addressed here the function of one of these genes, ytjD, which we renamed cinD (copper-induced nitroreductase). Copper, cadmium, and silver induced cinD in vivo, as shown by real-time quantitative PCR. A knockout mutant of cinD was more sensitive to oxidative stress exerted by 4-nitroquinoline-N-oxide and copper. Purified CinD is a flavoprotein and reduced 2,6-dichlorophenolindophenol and 4-nitroquinoline-N-oxide with k(cat) values of 27 and 11 s(-1), respectively, using NADH as a reductant. CinD also exhibited significant catalase activity in vitro. The X-ray structure of CinD was resolved at 1.35 A and resembles those of other nitroreductases. CinD is thus a nitroreductase which can protect L. lactis against oxidative stress that could be exerted by nitroaromatic compounds and copper.
Resumo:
To assess the anti-inflammatory effect of the probiotic Bifidobacterium lactis (B. lactis) in an adoptive transfer model of colitis.
Resumo:
Lactococcus lactis cannot synthesize haem, but when supplied with haem, expresses a cytochrome bd oxidase. Apart from the cydAB structural genes for this oxidase, L. lactis features two additional genes, hemH and hemW (hemN), with conjectured functions in haem metabolism. While it appears clear that hemH encodes a ferrochelatase, no function is known for hemW. HemW-like proteins occur in bacteria, plants and animals, and are usually annotated as CPDHs (coproporphyrinogen III dehydrogenases). However, such a function has never been demonstrated for a HemW-like protein. We here studied HemW of L. lactis and showed that it is devoid of CPDH activity in vivo and in vitro. Recombinantly produced, purified HemW contained an Fe-S (iron-sulfur) cluster and was dimeric; upon loss of the iron, the protein became monomeric. Both forms of the protein covalently bound haem b in vitro, with a stoichiometry of one haem per monomer and a KD of 8 μM. In vivo, HemW occurred as a haem-free cytosolic form, as well as a haem-containing membrane-associated form. Addition of L. lactis membranes to haem-containing HemW triggered the release of haem from HemW in vitro. On the basis of these findings, we propose a role of HemW in haem trafficking. HemW-like proteins form a distinct phylogenetic clade that has not previously been recognized.
Resumo:
Incontinentia lactis is a possible predisposing factor for an elevated level of intramammary infection. The goal of the present study was to investigate possible causes of incontinentia lactis in dairy cows. Two farms that differed in breed composition, but that had similar average milk yields were studied: herd A, 28 kg/d, 31 Red Holstein cows; and herd B, 26 kg/d, 16 Brown Swiss cows. Herd A was classified into 2 groups: incontinentia lactis (ILA group) and control, whereas herd B was exclusively a control herd. Milk samples that represented foremilk and the main milk fraction were collected during 4 milking sessions. In addition, milk leakage samples from the ILA group were collected at different time intervals from 0 to 5 h before milking. Measurements of the teat, milk flow, fractions of cisternal and alveolar milk, intramammary pressure, and blood oxytocin pattern also were obtained. The ILA cows did not have differences in fat content between milk leakage and cisternal milk fraction. Milk fat content, however, increased during milking in response to continuous milk ejection (1.95, 1.99, and 4.61% for milk leakage, cisternal, and main milk samples, respectively). Teat canals were 9% shorter in the ILA cows, which showed greater milk yield, peak, and average flow rates. Quarter cisternal milk yield of ILA cows tended to be greater (0.50 vs. 0.23 and 0.28 kg for ILA and controls from herds A and B, respectively), whereas percentages of cistern milk and alveolar milk did not differ from controls. The greater pressure in the ILA group, both before and after manual udder stimulation (ILA: 4.0 and 6.4 kPa; control: 2.0 and 5.0 kPa, respectively), could be an important cause for the leakage. Nevertheless, the increase in IMP that occurred after udder preparation affirms that milk ejection occurred in response to the tactile teat stimulation, but not before the onset of leakage. Blood oxytocin concentration in ILA cows was low until the start of udder preparation and increased in response to the milking stimulus (reaffirming the hypothesis that milk leakage occurred in the absence of milk ejection). In conclusion, milk losses by leakage are likely due to the large amount of cisternal milk, which creates pressure and causes leakage, in the absence of milk ejection.
Resumo:
Lactococcus lactis IL1403, a lactic acid bacterium widely used for food fermentation, is often exposed to stress conditions. One such condition is exposure to copper, such as in cheese making in copper vats. Copper is an essential micronutrient in prokaryotes and eukaryotes but can be toxic if in excess. Thus, copper homeostatic mechanisms, consisting chiefly of copper transporters and their regulators, have evolved in all organisms to control cytoplasmic copper levels. Using proteomics to identify novel proteins involved in the response of L. lactis IL1403 to copper, cells were exposed to 200 muM copper sulfate for 45 min, followed by resolution of the cytoplasmic fraction by two-dimensional gel electrophoresis. One protein strongly induced by copper was LctO, which was shown to be a NAD-independent lactate oxidase. It catalyzed the conversion of lactate to pyruvate in vivo and in vitro. Copper, cadmium, and silver induced LctO, as shown by real-time quantitative PCR. A copper-regulatory element was identified in the 5' region of the lctO gene and shown to interact with the CopR regulator, encoded by the unlinked copRZA operon. Induction of LctO by copper represents a novel copper stress response, and we suggest that it serves in the scavenging of molecular oxygen.
Resumo:
Lactococcus lactis IL1403 is a Gram-positive bacterium of great biotechnological interest for food grade applications. Its use is however hampered by the difficulty to efficiently transform this strain. We here describe a detailed, optimized electrotransformation protocol which yields a transformation efficiency of 10(6) cfu/microg of DNA with the two E. coli Gram-positive shuttle vectors pC3 and pVA838. The utility of the protocol was demonstrated by the generation of single- and double-knock-out mutants by homologous recombination.
Resumo:
To identify components of the copper homeostatic mechanism of Lactococcus lactis, we employed two-dimensional gel electrophoresis to detect changes in the proteome in response to copper. Three proteins upregulated by copper were identified: glyoxylase I (YaiA), a nitroreductase (YtjD), and lactate oxidase (LctO). The promoter regions of these genes feature cop boxes of consensus TACAnnTGTA, which are the binding site of CopY-type copper-responsive repressors. A genome-wide search for cop boxes revealed 28 such sequence motifs. They were tested by electrophoretic mobility shift assays for the interaction with purified CopR, the CopY-type repressor of L. lactis. Seven of the cop boxes interacted with CopR in a copper-sensitive manner. They were present in the promoter region of five genes, lctO, ytjD, copB, ydiD, and yahC; and two polycistronic operons, yahCD-yaiAB and copRZA. Induction of these genes by copper was confirmed by real-time quantitative PCR. The copRZA operon encodes the CopR repressor of the regulon; a copper chaperone, CopZ; and a putative copper ATPase, CopA. When expressed in Escherichia coli, the copRZA operon conferred copper resistance, suggesting that it functions in copper export from the cytoplasm. Other member genes of the CopR regulon may similarly be involved in copper metabolism.
Resumo:
CopR of Lactococcus lactis is a copper-responsive repressor involved in copper homoeostasis. It controls the expression of a total of 11 genes, the CopR regulon, in a copper-dependent manner. In the absence of copper, CopR binds to the promoters of the CopR regulon. Copper releases CopR from the promoters, allowing transcription of the downstream genes to proceed. CopR binds through its N-terminal domain to a 'cop box' of consensus TACANNTGTA, which is conserved in Firmicutes. We have solved the NMR solution structure of the N-terminal DNA-binding domain of CopR. The protein fold has a winged helix structure resembling that of the BlaI repressor which regulates antibiotic resistance in Bacillus licheniformis. CopR differs from other copper-responsive repressors, and the present structure represents a novel family of copper regulators, which we propose to call the CopY family.
Resumo:
The mdt(A) gene, previously designated mef214, from Lactococcus lactis subsp. lactis plasmid pK214 encodes a protein [Mdt(A) (multiple drug transporter)] with 12 putative transmembrane segments (TMS) that contain typical motifs conserved among the efflux proteins of the major facilitator superfamily. However, it also has two C-motifs (conserved in the fifth TMS of the antiporters) and a putative ATP-binding site. Expression of the cloned mdt(A) gene decreased susceptibility to macrolides, lincosamides, streptogramins, and tetracyclines in L. lactis and Escherichia coli, but not in Enterococcus faecalis or in Staphylococcus aureus. Glucose-dependent efflux of erythromycin and tetracycline was demonstrated in L. lactis and in E. coli.
Resumo:
Quinones are ubiquitous in the environment. They occur naturally but are also in widespread use in human and industrial activities. Quinones alone are relatively benign to bacteria, but in combination with copper, they become toxic by a mechanism that leads to intracellular thiol depletion. Here, it was shown that the yahCD-yaiAB operon of Lactococcus lactis IL1403 provides resistance to combined copper/quinone stress. The operon is under the control of CopR, which also regulates expression of the copRZA copper resistance operon as well as other L. lactis genes. Expression of the yahCD-yaiAB operon is induced by copper but not by quinones. Two of the proteins encoded by the operon appear to play key roles in alleviating quinone/copper stress: YaiB is a flavoprotein that converts p-benzoquinones to less toxic hydroquinones, using reduced nicotinamide adenine dinucleotide phosphate (NADPH) as reductant; YaiA is a hydroquinone dioxygenase that converts hydroquinone putatively to 4-hydroxymuconic semialdehyde in an oxygen-consuming reaction. Hydroquinone and methylhydroquinone are both substrates of YaiA. Deletion of yaiB causes increased sensitivity of L. lactis to quinones and complete growth arrest under combined quinone and copper stress. Copper induction of the yahCD-yaiAB operon offers protection to copper/quinone toxicity and could provide a growth advantage to L. lactis in some environments.
Resumo:
The Gram-positive bacteria Enterococcus hirae, Lactococcus lactis, and Bacillus subtilis have received wide attention in the study of copper homeostasis. Consequently, copper extrusion by ATPases, gene regulation by copper, and intracellular copper chaperoning are understood in some detail. This has provided profound insight into basic principles of how organisms handle copper. It also emerged that many bacterial species may not require copper for life, making copper homeostatic systems pure defense mechanisms. Structural work on copper homeostatic proteins has given insight into copper coordination and bonding and has started to give molecular insight into copper handling in biological systems. Finally, recent biochemical work has shed new light on the mechanism of copper toxicity, which may not primarily be mediated by reactive oxygen radicals.
Resumo:
CopY of Enterococcus hirae is a well characterized copper-responsive repressor involved in copper homeostasis. In the absence of copper, it binds to the promoter. In high copper, the CopZ copper chaperone donates copper to CopY, thereby releasing it from the promoter and allowing transcription of the downstream copper homeostatic genes of the cop operon. We here show that the CopY-like repressors from E. hirae, Lactococcus lactis, and Streptococcus mutans have similar affinities not only for their native promoters, but also for heterologous cop promoters. CopZ of L. lactis accelerated the release of CopY from the promoter, suggesting that CopZ of L. lactis acts as copper chaperone, similar to CopZ in E. hirae. The consensus binding motif of the CopY-like repressors was shown to be TACAxxTGTA. The same binding motif is present in promoters controlled by BlaI of Bacillus licheniformis, MecI of Staphylococcus aureus and related repressors. BlaI and MecI have known structures and belong to the family of 'winged helix' proteins. In the N- terminal domain, they share significant sequence similarity with CopY of E. hirae. Moreover, they bind to the same TACAxxTGTA motif. NMR analysis of the N-terminal DNA binding domain of CopY of L. lactis showed that it contained the same alpha-helical content like the same regions of BlaI and MecI. These findings suggest that the DNA binding domains of CopY-like repressors are also of the 'winged helix' type.