2 resultados para Kolmogorov
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
mgof computes goodness-of-fit tests for the distribution of a discrete (categorical, multinomial) variable. The default is to perform classical large sample chi-squared approximation tests based on Pearson's X2 statistic and the log likelihood ratio (G2) statistic or a statistic from the Cressie-Read family. Alternatively, mgof computes exact tests using Monte Carlo methods or exhaustive enumeration. A Kolmogorov-Smirnov test for discrete data is also provided. The moremata package, also available from SSC, is required.
Resumo:
A new Stata command called -mgof- is introduced. The command is used to compute distributional tests for discrete (categorical, multinomial) variables. Apart from classic large sample $\chi^2$-approximation tests based on Pearson's $X^2$, the likelihood ratio, or any other statistic from the power-divergence family (Cressie and Read 1984), large sample tests for complex survey designs and exact tests for small samples are supported. The complex survey correction is based on the approach by Rao and Scott (1981) and parallels the survey design correction used for independence tests in -svy:tabulate-. The exact tests are computed using Monte Carlo methods or exhaustive enumeration. An exact Kolmogorov-Smirnov test for discrete data is also provided.