16 resultados para Knowledge Cities
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Evolution of capital cities economies: Towards a knowledge intensive and thus more resilient economy
Resumo:
This paper gives an insight into cognitive computing for smart cities, resulting in cognitive cities. Cognitive cities and cognitive computing research with the underlying concepts of knowledge graphs and fuzzy cognitive maps are presented and supported by existing tools (i.e., IBM Watson and Google Now) and intended tools (meta-app). The paper illustrates FCM as a suiting instrument to represent information/knowledge in a city environment driven by human-technology interaction, enforcing the concept of cognitive cities. A proposed paper prototype combines the findings of the paper and shows the next step in the implementation of the proposed meta-app.
Resumo:
This paper introduces a mobile application (app) as the first part of an interactive framework. The framework enhances the inter-action between cities and their citizens, introducing the Fuzzy Analytical Hierarchy Process (FAHP) as a potential information acquisition method to improve existing citizen management en-deavors for cognitive cities. Citizen management is enhanced by advanced visualization using Fuzzy Cognitive Maps (FCM). The presented app takes fuzziness into account in the constant inter-action and continuous development of communication between cities or between certain of their entities (e.g., the tax authority) and their citizens. A transportation use case is implemented for didactical reasons.
Resumo:
This paper presents the technical background and functionality of a meta-application (meta-app) for cognitive cities. This app enhances communication and thereby facilitates e-governance. This paper focuses on a user-centered implementation of the Fuzzy Analytical Hierarchy Process (FAHP) by presenting its technical specifications in relation with cognitive cities. For didactical reasons, a use case from the user perspective is included. Finally the findings are summed up and future work is presented
Resumo:
Nach einer kurzen Begriffsfassung von Smart Cities gehen wir basierend auf den folgenden Beiträgen dieses Heftes auf verschiedene Eigenschaften einer solchen smarten Stadt ein. Dadurch versuchen wir den Ist-Zustand dieser Städte zu dokumentieren. Damit die jeweiligen Stakeholder (strategische) Entscheide treffen können, widmen wir danach ein Kapitel den Chancen und Risiken von Smart Cities. Anhand einer Studie des Europäischen Parlaments zeigen wir nachfolgend entsprechende Bestrebungen aus Europa auf. Anschliessend präsentieren wir eine Best-Practice-Roadmap für die Realisierung von Smart Cities. Zum Schluss zeichnen wir auf einer konnektivistischen Lern- und Kognitionstheorie aufbauend einen Weg zur Cognitive City der Zukunft. Dabei wird der Mensch nicht als isoliertes, sondern als vernetztes Individuum gesehen. Dies begünstigt die Weiterentwicklung von Smart Cities zu Städten, welche aktiv und selbstständig lernen und dadurch automatisch auf Veränderungen ihrer Umwelt reagieren können.
Resumo:
This chapter presents an evaluation and initial testing of a meta-application (meta-app) for enhanced communication and improved interaction (e.g., appointment scheduling) between stakeholders (e.g., citizens) in cognitive cities. The underlying theoretical models as well as the paper prototype are presented to ensure the comprehensibility of the user interface. This paper prototype of the meta-app was evaluated through interviews with various experts in different fields (e.g., a strategic consultant, a small and medium-sized enterprises cofounder in the field of online marketing, an IT project leader, and an innovation manager). The results and implications of the evaluation show that the idea behind this meta-app has the potential to improve the living standards of citizens and to lead to a next step in the realization and maturity of the meta-app. The meta-app helps citizens more effectively manage their time and organize their personal schedules and thus allows them to have more leisure time and take full advantage of it to ensure a good work-life balance to enable them to be the most efficient and productive during their working time.
Resumo:
The article proposes granular computing as a theoretical, formal and methodological basis for the newly emerging research field of human–data interaction (HDI). We argue that the ability to represent and reason with information granules is a prerequisite for data legibility. As such, it allows for extending the research agenda of HDI to encompass the topic of collective intelligence amplification, which is seen as an opportunity of today’s increasingly pervasive computing environments. As an example of collective intelligence amplification in HDI, we introduce a collaborative urban planning use case in a cognitive city environment and show how an iterative process of user input and human-oriented automated data processing can support collective decision making. As a basis for automated human-oriented data processing, we use the spatial granular calculus of granular geometry.
Resumo:
A software prototype for dynamic route planning in the travel industry for cognitive cities is presented in this paper. In contrast to existing tools, the prototype enhances the travel experience (i.e., sightseeing) by allowing additional flexibility to the user. The theoretical background of the paper strengthens the understanding of the introduced concepts (e.g., cognitive cities, fuzzy logic, graph databases) to comprehend the presented prototype. The prototype applies an instantiation and enhancement of the graph database Neo4j . For didactical reasons and to strengthen the understanding of this prototype a scenario, applied to route planning in the city of Bern (Switzerland) is shown in the paper.
Resumo:
Population growth is always increasing, and thus the concept of smart and cognitive cities is becoming more important. Developed countries are aware of and working towards needed changes in city management. However, emerging countries require the optimization of their own city management. This chapter illustrates, based on a use case, how a city in an emerging country can quickly progress using the concept of smart and cognitive cities. Nairobi, the capital of Kenya, is chosen for the test case. More than half of the population of Nairobi lives in slums with poor sanitation, and many slum inhabitants often share a single toilet, so the proper functioning and reliable maintenance of toilets are crucial. For this purpose, an approach for processing text messages based on cognitive computing (using soft computing methods) is introduced. Slum inhabitants can inform the responsible center via text messages in cases when toilets are not functioning properly. Through cognitive computer systems, the responsible center can fix the problem in a quick and efficient way by sending repair workers to the area. Focusing on the slum of Kibera, an easy-to-handle approach for slum inhabitants is presented, which can make the city more efficient, sustainable and resilient (i.e., cognitive).
Resumo:
Synchronizing mind maps with fuzzy cognitive maps can help to handle complex problems with many involved stakeholders by taking advantage of human creativity. The proposed approach has the capacity to instantiate cognitive cities by including cognitive computing. A use case in the context of decision-finding (concerning a transportation system) is presented to illustrate the approach.
Resumo:
This paper presents a software prototype of a personal digital assistant 2.0. Based on soft computing methods and cognitive computing this mobile application prototype improves calendar and mobility management in cognitive cities. Applying fuzzy cognitive maps and evolutionary algorithms, the prototype represents a next step towards the realization of cognitive cities (i.e., smart cities enhanced with cognition). A user scenario and a test version of the prototype are included for didactical reasons.