24 resultados para Kinematics
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Introduction . Compared to most equine horse breeds which are able to walk, trot and canter /gallop, the gait repertoire of the Icelandic horses additionally includes the lateral gait tölt and frequently also the pace. With respect to the tölt gait, special shoeing, saddling and riding techniques have been developed for Icelandic horses in order to enhance its expressiveness and regularity. Toes are left unnaturally long and heavy shoes and paddings, as well as weighted boots are used to enforce the individual gait predisposition. For the same reason, the rider is placed more caudally to the horse's centre of mass as compared to other riding techniques. The biomechanical impact of these methods on the health of the locomotor system has so far never been subject of systematic research. Objectives . The aims of the presented study are (1) to describe the kinetic and kinematic characteristics of the tölt performed on a treadmill, (2) to understand the mechanical consequences of shoeing manipulation (long hooves, weighted boots) on the loading and protraction movement of the limbs, as well as (3) to study the pressure distribution and effects on the gait pattern of 3 different saddle types used for riding Icelandic horses. Materials and methods . Gait analysis was carried out in 13 Icelandic horses at walk and at slow and medium tölting and trotting speeds on a high-speed treadmill instrumented for measuring vertical ground reaction forces as well as temporal and spatial gait variables. Kinematic data of horse, rider and saddle were measured simultaneously. Gait analysis was first carried out with high, long hooves (SH) without and in combination with weighted boots (ad aim (2)). Afterwards, horses were re-shod according to current horseshoeing standards (SN) and gait analysis was repeated (ad aims (1) and (2)). In a second trial, horses were additionally equipped with a pressure sensitive saddle mat and were ridden with a dressage-like saddle (SDres), an Icelandic saddle (Slcel) and a saddle cushion (SCush) in the standard saddle position (ad aim 3). Results and conclusions . Compared to trot at the same speed, tölting horses had a higher stride rate and lower stride impulses. At the tölt loading of the forelimbs was increased in form of higher peak vertical forces (Fzpeak) due to shorter relative stance durations (StDrel). Conversely, in the hindlimbs, longer StDrel resulted in lower Fzpeak. Despite the higher head-neck position at tölt, there was no measurable shift in weight to the hindlimbs. Footfall rhythm was in most horses laterally coupled at the tölt and frequently had a slight fourbeat and a very short suspension phase at trot; underlining the fact that performance of correct gaits in Icelandic horses needs special training. Gait performance as it is currently judged in competition could be improved using a shoeing with SH, resulting in a 21 ± 5 mm longer dorsal hoof wall, but also a weight gain of 273 ± 50 g at the distal limb due to heavier shoeing material. Compared to SN, SH led to a lower stride rate, a longer stride length and a higher, but not wider, forelimb protraction arc, which were also positively associated with speed. At the tölt, the footfall rhythm showed less tendency to lateral couplets and at the trot, the suspension phase was longer. However, on the long term, SH may have negative implications for the health of the palmar structures of the distal foot by increased limb impulses, higher torques at breakover (up to 20%); as well as peak vertical forces at faster speeds. Compared to the shoeing style, the saddle type had less influence on limb forces or movements. The slight weight shift to the rear with SCush and Slcel may be explained by the more caudal position of the rider relative to the horse's back. With SCush, pressure was highest under the cranial part of the saddle, whereas the saddles with trees had more pressure under the caudal area.
Resumo:
The Dent Blanche Tectonic System (DBTS) is a composite thrust sheet derived from the previously thinned passive Adriatic continental margin. A kilometric high-strain zone, the Roisan-Cignana Shear Zone (RCSZ) defines the major tectonic boundary within the DBTS and separates it into two subunits, the Dent Blanche s.s. nappe to the northwest and the Mont Mary nappe to the southeast. Within this shear zone, tectonic slices of Mesozoic and pre-Alpine meta-sediments became amalgamated with continental basement rocks of the Adriatic margin. The occurrence of high pressure assemblages along the contact between these tectonic slices indicates that the amalgamation occurred prior to or during the subduction process, at an early stage of the Alpine orogenic cycle. Detailed mapping, petrographic and structural analysis show that the Roisan-Cignana Shear Zone results from several superimposed Alpine structural and metamorphic stages. Subduction of the continental fragments is recorded by blueschist-facies deformation, whereas the Alpine collision is reflected by a greenschist facies overprint associated with the development of large-scale open folds. The postnappe evolution comprises the development of low-angle brittle faults, followed by large-scale folding (Vanzone phase) and finally brittle extensional faults. The RCSZ shows that fragments of continental crust had been torn off the passive continental margin prior to continental collision, thus recording the entire history of the orogenic cycle. The role of preceding Permo-Triassic lithospheric thinning, Jurassic rifting, and ablative subduction processes in controlling the removal of crustal fragments from the reactivated passive continental margin is discussed. Results of this study constrain the temporal sequence of the tectono-metamorphic processes involved in the assembly of the DBTS, but they also show limits on the interpretation. In particular it remains difficult to judge to what extent precollisional rifting at the Adriatic continental margin preconditioned the efficiency of convergent processes, i.e. accretion, subduction, and orogenic exhumation.
Resumo:
Selection on naturally occurring hybrid individuals is a key component of speciation theory, but few studies examine the functional basis of hybrid performance. We examine the functional consequences of hybridization in nature, using the freshwater sunfishes (Centrarchidae), where natural hybrids have been studied for more than a century and a half. We examined bluegill (Lepomis macrochirus), green sunfish (Lepomis cyanellus), and their naturally occurring hybrid, using prey-capture kinematics and morphology to parameterize suction-feeding simulations on divergent parental resources. Hybrid individuals exhibited kinematics intermediate between those of the two parental species. However, performance assays indicated that hybrids display performance most similar to the worse-performing species for a given parental resource. Our results show that intermediate hybrid phenotypes can be impaired by a less-than-intermediate performance and hence suffer a larger loss in fitness than could be inferred from morphology alone.
Resumo:
During intertemporal decisions, the preference for smaller, sooner reward over larger-delayed rewards (temporal discounting, TD) exhibits substantial inter-subject variability; however, it is currently unclear what are the mechanisms underlying this apparently idiosyncratic behavior. To answer this question, here we recorded and analyzed mouse movement kinematics during intertemporal choices in a large sample of participants (N = 86). Results revealed a specific pattern of decision dynamics associated with the selection of “immediate” versus “delayed” response alternatives, which well discriminated between a “discounter” versus a “farsighted” behavior—thus representing a reliable behavioral marker of TD preferences. By fitting the Drift Diffusion Model to the data, we showed that differences between discounter and farsighted subjects could be explained in terms of different model parameterizations, corresponding to the use of different choice mechanisms in the two groups. While farsighted subjects were biased toward the “delayed” option, discounter subjects were not correspondingly biased toward the “immediate” option. Rather, as shown by the dynamics of evidence accumulation over time, their behavior was characterized by high choice uncertainty.
Resumo:
Background Focal spasticity is a significant motor disorder following stroke, and Botulinum Toxin Type-A (BoNT-A) is a useful treatment for this. The authors evaluated kinematic modifications induced by spasticity, and whether or not there is any improvement following injection of BoNT-A. Methods Eight patients with stroke with upper-limb spasticity, showing a flexor pattern, were evaluated using kinematics before and after focal treatment with BoNT-A. A group of sex- and age-matched normal volunteers acted as a control group. Results Repeated-measures ANOVA showed that patients with stroke performed more slowly than the control group. Following treatment with BoNT-A, there was a significant improvement in kinematics in patients with stroke, while in the control group, performance remained unchanged. Conclusions Focal treatment of spasticity with BoNT-A leads to an adaptive change in the upper limb of patients with spastic stroke.
Resumo:
BACKGROUND: The authors have shown that rats can be retrained to swim after a moderately severe thoracic spinal cord contusion. They also found that improvements in body position and hindlimb activity occurred rapidly over the first 2 weeks of training, reaching a plateau by week 4. Overground walking was not influenced by swim training, suggesting that swimming may be a task-specific model of locomotor retraining. OBJECTIVE: To provide a quantitative description of hindlimb movements of uninjured adult rats during swimming, and then after injury and retraining. METHODS: The authors used a novel and streamlined kinematic assessment of swimming in which each limb is described in 2 dimensions, as 3 segments and 2 angles. RESULTS: The kinematics of uninjured rats do not change over 4 weeks of daily swimming, suggesting that acclimatization does not involve refinements in hindlimb movement. After spinal cord injury, retraining involved increases in hindlimb excursion and improved limb position, but the velocity of the movements remained slow. CONCLUSION: These data suggest that the activity pattern of swimming is hardwired in the rat spinal cord. After spinal cord injury, repetition is sufficient to bring about significant improvements in the pattern of hindlimb movement but does not improve the forces generated, leaving the animals with persistent deficits. These data support the concept that force (load) and pattern generation (recruitment) are independent and may have to be managed together with respect to postinjury rehabilitation.
Resumo:
A comparison between an unconstrained and a partially constrained system for in vitro biomechanical testing of the L5-S1 spinal unit was conducted. The objective was to compare the compliance and the coupling of the L5-S1 unit measured with an unconstrained and a partially constrained test for the three major physiological motions of the human spine. Very few studies have compared unconstrained and partially constrained testing systems using the same cadaveric functional spinal units (FSUs). Seven human L5-S1 units were therefore tested on both a pneumatic, unconstrained, and a servohydraulic, partially constrained system. Each FSU was tested along three motions: flexion-extension (FE), lateral bending (LB) and axial rotation (AR). The obtained kinematics on both systems is not equivalent, except for the FE case, where both motions are similar. The directions of coupled motions were similar for both tests, but their magnitudes were smaller in the partially constrained configuration. The use of a partially constrained system to characterize LB and AR of the lumbosacral FSU decreased significantly the measured stiffness of the segment. The unconstrained system is today's "gold standard" for the characterization of FSUs. The selected partially constrained method seems also to be an appropriate way to characterize FSUs for specific applications. Care should be taken using the latter method when the coupled motions are important.
Resumo:
BACKGROUND Muscle strength greatly influences gait kinematics. The question was whether this association is similar in different diseases. METHODS Data from instrumented gait analysis of 716 patients were retrospectively assessed. The effect of muscle strength on gait deviations, namely the gait profile score (GPS) was evaluated by means of generalised least square models. This was executed for seven different patient groups. The groups were formed according to the type of disease: orthopaedic/neurologic, uni-/bilateral affection, and flaccid/spastic muscles. RESULTS Muscle strength had a negative effect on GPS values, which did not significantly differ amongst the different patient groups. However, an offset of the GPS regression line was found, which was mostly dependent on the basic disease. Surprisingly, spastic patients, who have reduced strength and additionally spasticity in clinical examination, and flaccid neurologic patients showed the same offset. Patients with additional lack of trunk control (Tetraplegia) showed the largest offset. CONCLUSION Gait kinematics grossly depend on muscle strength. This was seen in patients with very different pathologies. Nevertheless, optimal correction of biomechanics and muscle strength may still not lead to a normal gait, especially in that of neurologic patients. The basic disease itself has an additional effect on gait deviations expressed as a GPS-offset of the linear regression line.
Resumo:
BACKGROUND Anterior cruciate ligament (ACL) rupture is a common lesion. Current treatment emphasizes arthroscopic ACL reconstruction via a graft, although this approach is associated with potential drawbacks. A new method of dynamic intraligamentary stabilization (DIS) was subjected to biomechanical analysis to determine whether it provides the necessary knee stability for optimal ACL healing. METHODS Six human knees from cadavers were harvested. The patellar tendon, joint capsule and all muscular attachments to the tibia and femur were removed, leaving the collateral and the cruciate ligaments intact. The knees were stabilized and the ACL kinematics analyzed. Anterior-posterior (AP) stability measurements evaluated the knees in the following conditions: (i) intact ACL, (ii) ACL rupture, (iii) ACL rupture with primary stabilization, (iv) primary stabilization after 50 motion cycles, (v) ACL rupture with DIS, and (vi) DIS after 50 motion cycles. RESULTS After primary suture stabilization, average AP laxity was 3.2mm, which increased to an average of 11.26mm after 50 movement cycles. With primary ACL stabilization using DIS, however, average laxity values were consistently lower than those of the intact ligament, increasing from an initial AP laxity of 3.00mm to just 3.2mm after 50 movement cycles. CONCLUSIONS Dynamic intraligamentary stabilization established and maintained close contact between the two ends of the ruptured ACL, thus ensuring optimal conditions for potential healing after primary reconstruction. The present ex vivo findings show that the DIS technique is able to restore AP stability of the knee.
Resumo:
[1] Two millimeter-sized hydrothermal monazites from an open fissure (cleft) that developed late during a dextral transpressional deformation event in the Aar Massif, Switzerland, have been investigated using electron microprobe and ion probe. The monazites are characterized by high Th/U ratios typical of other hydrothermal monazites. Deformation events in the area have been subdivided into three phases: (D1) main thrusting including formation of a new schistosity, (D2) dextral transpression, and (D3) local crenulation including development of a new schistosity. The two younger deformational structures are related to a subvertically oriented intermediate stress axis, which is characteristic for strike slip deformation. The inferred stress environment is consistent with observed kinematics and the opening of such clefts. Therefore, the investigated monazite-bearing cleft formed at the end of D2 and/or D3, and during dextral movements along NNW dipping planes. Interaction of cleft-filling hydrothermal fluid with wall rock results in rare earth element (REE) mineral formation and alteration of the wall rock. The main newly formed REE minerals are Y-Si, Y-Nb-Ti minerals, and monazite. Despite these mineralogical changes, the bulk chemistry of the system remains constant and thus these mineralogical changes require redistribution of elements via a fluid over short distances (centimeter). Low-grade alteration enables local redistribution of REE, related to the stability of the accessory phases. This allows high precision isotope dating of cleft monazite. 232Th/208Pb ages are not affected by excess Pb and yield growth domain ages between 8.03 ± 0.22 and 6.25 ± 0.60 Ma. Monazite crystallization in brittle structures is coeval or younger than 8 Ma zircon fission track data and hence occurred below 280°C.
Resumo:
Task-oriented, repetitive and intensive arm training can enhance arm rehabilitation in patients with paralyzed upper extremities due to lesions of the central nervous system. There is evidence that the training duration is a key factor for the therapy progress. Robot-supported therapy can improve the rehabilitation allowing more intensive training. This paper presents the kinematics, the control and the therapy modes of the arm therapy robot ARMin. It is a haptic display with semi-exoskeleton kinematics with four active and two passive degrees of freedom. Equipped with position, force and torque sensors the device can deliver patient-cooperative arm therapy taking into account the activity of the patient and supporting him/her only as much as needed. The haptic display is combined with an audiovisual display that is used to present the movement and the movement task to the patient. It is assumed that the patient-cooperative therapy approach combined with a multimodal display can increase the patient's motivation and activity and, therefore, the therapeutic progress.
Resumo:
INTRODUCTION AND HYPOTHESIS The prevalence of female stress urinary incontinence is high, and young adults are also affected, including athletes, especially those involved in "high-impact" sports. To date there have been almost no studies testing pelvic floor muscle (PFM) activity during dynamic functional whole body movements. The aim of this study was the description and reliability test of PFM activity and time variables during running. METHODS A prospective cross-sectional study including ten healthy female subjects was designed with the focus on the intra-session test-retest reliability of PFM activity and time variables during running derived from electromyography (EMG) and accelerometry. RESULTS Thirteen variables were identified based on ten steps of each subject: Six EMG variables showed good reliability (ICC 0.906-0.942) and seven time variables did not show good reliability (ICC 0.113-0.731). Time variables (e.g. time difference between heel strike and maximal acceleration of vaginal accelerator) showed low reliability. However, relevant PFM EMG variables during running (e.g., pre-activation, minimal and maximal activity) could be identified and showed good reliability. CONCLUSION Further adaptations regarding measurement methods should be tested to gain better control of the kinetics and kinematics of the EMG probe and accelerometers. To our knowledge this is the first study to test the reliability of PFM activity and time variables during dynamic functional whole body movements. More knowledge of PFM activity and time variables may help to provide a deeper insight into physical strain with high force impacts and important functional reflexive contraction patterns of PFM to maintain or to restore continence.
Resumo:
A search for supersymmetric particles in final states with zero, one, and two leptons, with and without jets identified as originating from b-quarks, in 4.7 fb(-1) of root s = 7 TeV pp collisions produced by the Large Hadron Collider and recorded by the ATLAS detector is presented. The search uses a set of variables carrying information on the event kinematics transverse and parallel to the beam line that are sensitive to several topologies expected in supersymmetry. Mutually exclusive final states are defined, allowing a combination of all channels to increase the search sensitivity. No deviation from the Standard Model expectation is observed. Upper limits at 95 % confidence level on visible cross-sections for the production of new particles are extracted. Results are interpreted in the context of the constrained minimal supersymmetric extension to the Standard Model and in supersymmetry-inspired models with diverse, high-multiplicity final states.