26 resultados para Key to species

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

East Africa’s Lake Victoria provides resources and services to millions of people on the lake’s shores and abroad. In particular, the lake’s fisheries are an important source of protein, employment, and international economic connections for the whole region. Nonetheless, stock dynamics are poorly understood and currently unpredictable. Furthermore, fishery dynamics are intricately connected to other supporting services of the lake as well as to lakeshore societies and economies. Much research has been carried out piecemeal on different aspects of Lake Victoria’s system; e.g., societies, biodiversity, fisheries, and eutrophication. However, to disentangle drivers and dynamics of change in this complex system, we need to put these pieces together and analyze the system as a whole. We did so by first building a qualitative model of the lake’s social-ecological system. We then investigated the model system through a qualitative loop analysis, and finally examined effects of changes on the system state and structure. The model and its contextual analysis allowed us to investigate system-wide chain reactions resulting from disturbances. Importantly, we built a tool that can be used to analyze the cascading effects of management options and establish the requirements for their success. We found that high connectedness of the system at the exploitation level, through fisheries having multiple target stocks, can increase the stocks’ vulnerability to exploitation but reduce society’s vulnerability to variability in individual stocks. We describe how there are multiple pathways to any change in the system, which makes it difficult to identify the root cause of changes but also broadens the management toolkit. Also, we illustrate how nutrient enrichment is not a self-regulating process, and that explicit management is necessary to halt or reverse eutrophication. This model is simple and usable to assess system-wide effects of management policies, and can serve as a paving stone for future quantitative analyses of system dynamics at local scales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Determinants of plant establishment and invasion are a key issue in ecology and evolution. Although establishment success varies substantially among species, the importance of species traits and extrinsic factors as determinants of establishment in existing communities has remained difficult to prove in observational studies because they can be confounded and mask each other. Therefore, we conducted a large multispecies field experiment to disentangle the relative importance of extrinsic factors vs. species characteristics for the establishment success of plants in grasslands. We introduced 48 alien and 45 native plant species at different seed numbers into multiple grassland sites with or without experimental soil disturbance and related their establishment success to species traits assessed in five independent multispecies greenhouse experiments. High propagule pressure and high seed mass were the most important factors increasing establishment success in the very beginning of the experiment. However, after 3 y, propagule pressure became less important, and species traits related to biotic interactions (including herbivore resistance and responses to shading and competition) became the most important drivers of success or failure. The relative importance of different traits was environment-dependent and changed over time. Our approach of combining a multispecies introduction experiment in the field with trait data from independent multispecies experiments in the greenhouse allowed us to detect the relative importance of species traits for early establishment and provided evidence that species traits—fine-tuned by environmental factors—determine success or failure of alien and native plants in temperate grasslands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Backgrounds and Aims Leaf functional traits have been used as a basis to categoize plants across a range of resource-use specialization, from those that conserve available resources to those that exploit them. However, the extent to which the leaf functional traits used to define the resource-use strategies are related to root traits and are good indicators of the ability of the roots to take up nitrogen (N) are poorly known. This is an important question because interspecific differences in N uptake have been proposed as one mechanism by which species coexistence may be determined. This study therefore investigated the relationships between functional traits and N uptake ability for grass species across a range of conservative to exploitative resource-use strategies.Methods Root uptake of NH4+ and NO3-, and leaf and root functional traits were measured for eight grass species sampled at three grassland sites across Europe, in France, Austria and the UK. Species were grown in hydroponics to determine functional traits and kinetic uptake parameters (Imax and Km) under standardized conditions.Key Results Species with high specific leaf area (SLA) and shoot N content, and low leaf and root dry matter content (LDMC and RDMC, respectively), which are traits associated with the exploitative syndrome, had higher uptake and affinity for both N forms. No trade-off was observed in uptake between the two forms of N, and all species expressed a higher preference for NH4+.Conclusions The results support the use of leaf traits, and especially SLA and LDMC, as indicators of the N uptake ability across a broad range of grass species. The difficulties associated with assessing root properties are also highlighted, as root traits were only weakly correlated with leaf traits, and only RDMC and, to a lesser extent, root N content were related to leaf traits.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The intervertebral disc (IVD) is the joint of the spine connecting vertebra to vertebra. It functions to transmit loading of the spine and give flexibility to the spine. It composes of three compartments: the innermost nucleus pulposus (NP) encompassing by the annulus fibrosus (AF), and two cartilaginous endplates connecting the NP and AF to the vertebral body on both sides. Discogenic pain possibly caused by degenerative intervertebral disc disease (DDD) and disc herniations has been identified as a major problem in our modern society. To study possible mechanisms of IVD degeneration, in vitro organ culture systems with live disc cells are highly appealing. The in vitro culture of intact bovine coccygeal IVDs has advanced to a relevant model system, which allows the study of mechano-biological aspects in a well-controlled physiological and mechanical environment. Bovine tail IVDs can be obtained relatively easy in higher numbers and are very similar to the human lumbar IVDs with respect to cell density, cell population and dimensions. However, previous bovine caudal IVD harvesting techniques retaining cartilaginous endplates and bony endplates failed after 1-2 days of culture since the nutrition pathways were obviously blocked by clotted blood. IVDs are the biggest avascular organs, thus, the nutrients to the cells in the NP are solely dependent on diffusion via the capillary buds from the adjacent vertebral body. Presence of bone debris and clotted blood on the endplate surfaces can hinder nutrient diffusion into the center of the disc and compromise cell viability. Our group established a relatively quick protocol to "crack"-out the IVDs from the tail with a low risk for contamination. We are able to permeabilize the freshly-cut bony endplate surfaces by using a surgical jet lavage system, which removes the blood clots and cutting debris and very efficiently reopens the nutrition diffusion pathway to the center of the IVD. The presence of growth plates on both sides of the vertebral bone has to be avoided and to be removed prior to culture. In this video, we outline the crucial steps during preparation and demonstrate the key to a successful organ culture maintaining high cell viability for 14 days under free swelling culture. The culture time could be extended when appropriate mechanical environment can be maintained by using mechanical loading bioreactor. The technique demonstrated here can be extended to other animal species such as porcine, ovine and leporine caudal and lumbar IVD isolation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Osteoarthritis (OA) is the most common form of joint disease and the leading cause of pain and physical disability in older people. Risk factors for incidence and progression of osteoarthritis vary considerably according to the type of joint. Disease assessment is difficult and the relationship between the radiographic severity of joint damage and the incidence and severity of pain is only modest. Psychosocial and socio-economic factors play an important role. This chapter will discuss four main guiding principles to the management of OA: (1) to avoid overtreating people with mild symptoms; (2) to attempt to avoid doing more harm than good ('primum non nocere'); (3) to base patient management on the severity of pain, disability and distress, and not on the severity of joint damage or radiographic change; and (4) to start with advice about simple measures that patients can take to help themselves, and only progress to interventions that require supervision or specialist knowledge if simple measures fail. Effect sizes derived from meta-analyses of large randomized trials in OA are only small to moderate for most therapeutic interventions, but they are still valuable for patients and clinically relevant for physicians. Joint replacement may be the only option with a large effect size, but is only appropriate for the relatively small number of people with OA who have advanced disease and severe symptoms. The key to successful management involves patient and health professionals working together to develop optimal treatment strategies for the individual.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Successful software systems cope with complexity by organizing classes into packages. However, a particular organization may be neither straightforward nor obvious for a given developer. As a consequence, classes can be misplaced, leading to duplicated code and ripple effects with minor changes effecting multiple packages. We claim that contextual information is the key to rearchitecture a system. Exploiting contextual information, we propose a technique to detect misplaced classes by analyzing how client packages access the classes of a given provider package. We define locality as a measure of the degree to which classes reused by common clients appear in the same package. We then use locality to guide a simulated annealing algorithm to obtain optimal placements of classes in packages. The result is the identification of classes that are candidates for relocation. We apply the technique to three applications and validate the usefulness of our approach via developer interviews.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The strength of top-down indirect effects of carnivores on plants (trophic cascades) varies greatly and may depend on the identity of the intermediate (herbivore) species. If the effect strength is linked to functional traits of the herbivores then this would allow for more general predictions. Due to the generally sub-lethal effects of herbivory in terrestrial systems, trophic cascades manifest themselves in the first instance in the fitness of individual plants, affecting both their numerical and genetic contributions to the population. We directly compare the indirect predator effects on growth and reproductive output of individual Vicia faba plants mediated by the presence of two aphid species: Acyrtosiphon pisum is characterised by a boom and bust strategy whereby colonies grow fast and overexploit their host plant individual while Megoura viciae appear to follow a more prudent strategy that avoids over-exploitation and death of the host plant.Plants in the field were infested with A. pisum, M. viciae or both and half the plants were protected from predators. Exposure to predators had a strong impact on the biomass of individual plants and the strength of this effect differed significantly between the different herbivore treatments.A. pisum had a greater direct impact on plants and this was coupled with a significantly stronger indirect predator effect on plant biomass.Although the direct impact of predators was strongest on M. viciae, this was not transmitted to the plant level, indicating that the predator-prey interactions strength is not as important as the plant-herbivore link for the magnitude of the indirect predator impact. At the individual plant level, the indirect predator effect was purely due to consumptive effects on herbivore densities with no evidence for increased herbivore dispersal in response to presence of predators. The nature of plant-herbivore interactions is the key to terrestrial trophic cascade strength. The two herbivores that we compared were similar in feeding mode and body size but differed their way how they exploit host plants, which was the important trait explaining the strength of the trophic cascade.