2 resultados para Keeping quality

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To describe the electronic medical databases used in antiretroviral therapy (ART) programmes in lower-income countries and assess the measures such programmes employ to maintain and improve data quality and reduce the loss of patients to follow-up. METHODS: In 15 countries of Africa, South America and Asia, a survey was conducted from December 2006 to February 2007 on the use of electronic medical record systems in ART programmes. Patients enrolled in the sites at the time of the survey but not seen during the previous 12 months were considered lost to follow-up. The quality of the data was assessed by computing the percentage of missing key variables (age, sex, clinical stage of HIV infection, CD4+ lymphocyte count and year of ART initiation). Associations between site characteristics (such as number of staff members dedicated to data management), measures to reduce loss to follow-up (such as the presence of staff dedicated to tracing patients) and data quality and loss to follow-up were analysed using multivariate logit models. FINDINGS: Twenty-one sites that together provided ART to 50 060 patients were included (median number of patients per site: 1000; interquartile range, IQR: 72-19 320). Eighteen sites (86%) used an electronic database for medical record-keeping; 15 (83%) such sites relied on software intended for personal or small business use. The median percentage of missing data for key variables per site was 10.9% (IQR: 2.0-18.9%) and declined with training in data management (odds ratio, OR: 0.58; 95% confidence interval, CI: 0.37-0.90) and weekly hours spent by a clerk on the database per 100 patients on ART (OR: 0.95; 95% CI: 0.90-0.99). About 10 weekly hours per 100 patients on ART were required to reduce missing data for key variables to below 10%. The median percentage of patients lost to follow-up 1 year after starting ART was 8.5% (IQR: 4.2-19.7%). Strategies to reduce loss to follow-up included outreach teams, community-based organizations and checking death registry data. Implementation of all three strategies substantially reduced losses to follow-up (OR: 0.17; 95% CI: 0.15-0.20). CONCLUSION: The quality of the data collected and the retention of patients in ART treatment programmes are unsatisfactory for many sites involved in the scale-up of ART in resource-limited settings, mainly because of insufficient staff trained to manage data and trace patients lost to follow-up.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For the main part, electronic government (or e-government for short) aims to put digital public services at disposal for citizens, companies, and organizations. To that end, in particular, e-government comprises the application of Information and Communications Technology (ICT) to support government operations and provide better governmental services (Fraga, 2002) as possible with traditional means. Accordingly, e-government services go further as traditional governmental services and aim to fundamentally alter the processes in which public services are generated and delivered, after this manner transforming the entire spectrum of relationships of public bodies with its citizens, businesses and other government agencies (Leitner, 2003). To implement this transformation, one of the most important points is to inform the citizen, business, and/or other government agencies faithfully and in an accessible way. This allows all the partaking participants of governmental affairs for a transition from passive information access to active participation (Palvia and Sharma, 2007). In addition, by a corresponding handling of the participants' data, a personalization towards these participants may even be accomplished. For instance, by creating significant user profiles as a kind of participants' tailored knowledge structures, a better-quality governmental service may be provided (i.e., expressed by individualized governmental services). To create such knowledge structures, thus known information (e.g., a social security number) can be enriched by vague information that may be accurate to a certain degree only. Hence, fuzzy knowledge structures can be generated, which help improve governmental-participants relationship. The Web KnowARR framework (Portmann and Thiessen, 2013; Portmann and Pedrycz, 2014; Portmann and Kaltenrieder, 2014), which I introduce in my presentation, allows just all these participants to be automatically informed about changes of Web content regarding a- respective governmental action. The name Web KnowARR thereby stands for a self-acting entity (i.e. instantiated form the conceptual framework) that knows or apprehends the Web. In this talk, the frameworks respective three main components from artificial intelligence research (i.e. knowledge aggregation, representation, and reasoning), as well as its specific use in electronic government will be briefly introduced and discussed.