16 resultados para Kanada

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In eukaryotic cells, translation of messenger RNA (mRNA) can be initiated either on transcripts associated with the cap-binding complex (CBC; consisting of CBP80 and CBP20) or on transcripts with the eukaryotic translation initiation factor (eIF) 4E bound to the cap. Together with eIF4G and eIF4A, eIF4E forms the eIF4F-complex, which mediates translation initiation during the bulk of cellular protein synthesis. Functionally substituting for eIF4G, the CBP80/20-dependent translation initiation factor (CTIF) has been reported to be part of the CBC-dependent translation initiation complex 1,2. CTIF consists of a N-terminal CBP80-binding domain and a conserved C-terminal MIF4G domain 1. This MIF4G domain has been shown to mediate the interaction between CTIF and different factors such as eIF3g and the stem-loop binding protein (SLBP) 2,3. Here we provide evidence that CTIF, besides its function in translation initiation, is also involved in mRNA translocation from the nucleus to the cytoplasm, possibly through a direct interaction with the nuclear export factor NFX1/TAP. Taken together our results suggest that CTIF can function as a platform that interacts with proteins involved in different steps of the mRNA metabolism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The understanding of molecular mechanisms requires the elucidation of protein-protein interaction in vivo. For large multi-factor complexes like those assembling on mRNA, co-immunoprecipitation assays often identify many peripheral interactors that complicate the interpretation of such results and that might conceal other insightful mechanistic connections. Here we address the protein-protein interaction network for key factors in the nonsense-mediated mRNA decay (NMD) pathway in a distant-dependent manner using BioID1,2. In this novel approach, the mutant E. coli biotin-protein ligase BirAR118G is fused to the bait protein and biotinylates proximal proteins promiscuously. Hence, interactors positioned close to the bait in vivo are enriched by streptavidin purification and identified by mass spectrometry or western blotting. We present a validation of the BioID assay and preliminary results for close interactors of UPF1 and other key players in NMD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eukaryotic mRNAs with premature translation-termination codons (PTCs) are recognized and eliminated by nonsense-mediated mRNA decay (NMD). NMD targeted mRNAs can be degraded by different routes that all involve phosphorylated UPF1 (P-UPF1) as a starting point. The endonuclease SMG6, which cleaves mRNA near the PTC, is one of three known NMD factors thought to be recruited to nonsense mRNAs by interaction with P-UPF1, leading to eventual mRNA degradation. By MS2-mediated tethering of SMG6 and mutants thereof to a reporter RNA combined with knockdowns of various NMD factors, we demonstrate that besides its endonucleolytic activity, SMG6 also requires UPF1 and SMG1 for inducing RNA decay. Our experiments revealed a phosphorylation-independent interaction between SMG6 and UPF1 that is important for SMG6-mediated mRNA decay and using yeast two hybrid assays, we mapped this interaction to the unique stalk region of the UPF1 helicase domain. This region of UPF1 is essential for SMG6-mediated reporter RNA decay and also for NMD. Our results postulate that besides recruiting SMG6 to its RNA substrates, UPF1 is also required to activate its endonuclease activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Small non-protein-coding RNA (ncRNA) molecules are key players in controlling gene expression at multiple steps in all domains of life. While the list of validated ncRNAs that regulate crucial cellular processes grows steadily (such as micro RNAs and small-interfering RNAs), not a single ncRNA has been identified that directly interacts and regulates the ribosome during protein biosynthesis (with the notable exceptions of 7SL RNA and tmRNA). This is unexpected, given the central position the ribosome plays during gene expression. To investigate whether such a class of regulatory ncRNAs does exist we performed genomic screens for small ribosome-associated RNAs in various model organisms of all three domains [1,2]. Here we show that an mRNA-derived 18 nucleotide long ncRNA is capable of down-regulating translation in Saccharomyces cerevisiae by directly targeting the ribosome [3]. This 18-mer ncRNA binds to polysomes upon salt stress and is crucial for efficient growth under hyperosmotic conditions. Although the 18-mer RNA originates from the TRM10 locus, which encodes a tRNA methyltransferase, genetic analyses revealed the 18-mer RNA nucleotide sequence, rather than the mRNA-encoded enzyme, as the translation regulator under these stress conditions. Our data reveal the ribosome as a target for small regulatory ncRNAs and unveil the existence of a novel mechanism of translation regulation. Analogous genomic screens in organisms spanning all three domains of life demonstrate the existence of thousands of ncRNA candidates putatively regulating the ribosome. We therefore anticipate that ribosome-bound ncRNAs are capable of fine tuning translation and might represent a so far largely unexplored class of regulatory ncRNAs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Translocation factor EF-G, possesses a low basal GTPase activity, which is stimulated by the ribosome. One potential region of the ribosome that triggers GTPase activity of EF-G is the Sarcin-Ricin-Loop (SRL) (helix 95) in domain VI of the 23S rRNA. Structural data showed that the tip of the SRL closely approaches GTP in the active center of EF-G, structural probing data confirmed that EF-G interacts with nucleotides G2655, A2660, G2661 and A2662.1-3 The exocyclic group of adenine at A2660 is required for stimulation of EF-G GTPase activity by the ribosome as demonstrated using atomic mutagenesis.4 Recent crystal structures of EF-G on the ribosome, gave more insights into the molecular mechanism of EF-G GTPase activity.5 Based on the structure of EF-Tu on the ribosome1, the following mechanism of GTPase activation was proposed: upon binding of EF-G to the ribosome, the conserved His92 (E.coli) changes its position, pointing to the γ-phosphate of GTP. In this activated state, the phosphate of residue A2662 of the SRL positions the catalytic His in its active conformation. It was further proposed that the phosphate oxygen of A2662 is involved in a charge-relay system, enabling GTP hydrolysis. In order to test this mechanism, we use the atomic mutagenesis approach, which allows introducing non-natural modifications in the SRL, in the context of the complete 70S ribosome. Therefore, we replaced one of the non-bridging oxygens of A2662 by a methyl group. A methylphosphonat is not able to position or activate a histidine, as it has no free electrons and therefore no proton acceptor function. These modified ribosomes were then tested for stimulation of EF-G GTPase activity. First experiments show that one of the two stereoisomers incorporated into ribosomes does not stimulate GTPase activity of EF-G, whereas the other is active. From this we conclude that indeed the non-bridging phosphate oxygen of A2662 is involved in EF-G GTPase activation by the ribosome. Ongoing experiments aim at revealing the contribution of this non-bridging oxygen at A2662 to the mechanism of EF-G GTPase activation at the atomic level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Non-protein-coding RNAs are a functionally versatile class of transcripts found in all domains of life exerting their biological role at the RNA level. Recently, we demonstrated that the vault-associated RNAs (vtRNAs) were significantly up-regulated in human B cells upon Epstein-Barr virus (EBV) infection [1,2]. vtRNAs are an integral part of the vault complex, a huge and evolutionarily conserved cytoplasmic ribonucleoprotein complex. The major vault protein (MVP) is the main structural component of the complex while vtRNA accounts for only 5% of its mass. Very little is known about the function(s) of the vtRNAs or the vault complex. In particular the role and significance of the previously observed vtRNA up-regulation upon EBV infection remained unclear. We individually expressed EBV-encoded genes in B cells and found the latent membrane protein 1 (LMP1) as trigger for vtRNA up-regulation. To unravel a putative functional interconnection between vtRNA expression and EBV infection, we ectopically expressed vtRNA1-1 in human B cells and observed an improved viral establishment. Furthermore, expression of vtRNA1-1 but not of the other vtRNA paralogs protected cells from undergoing apoptosis. Knock-down of MVP had no effect on these phenotypes thus revealing the vtRNA and not the vault complex to contribute to the enhanced EBV establishment and apoptosis resistance. Mutational analysis highlighted the central domain of the vtRNA to be involved in the anti-apoptotic effect. Ongoing research aims at characterizing the target of vtRNA1-1 in the apoptotic pathway. In summary, our data reveal a crucial cellular function for the so far elusive RNA biology of the vtRNAs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Le présent article examine dans quelle mesure l’organisation des trajectoires scolaires et les parcours conduisant à l’enseignement supérieur favorisent la mobilité sociale ou au contraire la reproduction des inégalités. Nous avons comparé trois pays : la France, la Suisse et le Canada. Les résultats obtenus à partir des données tirées des panels d’enquêtes menées dans ces trois pays permettent d’observer deux situations opposées. Plus l’enseignement supérieur est valorisé au détriment de la formation professionnelle, plus les inégalités d’accès à l’enseignement supérieur ont tendance à s’exacerber. La compétition y est telle que ce sont les jeunes de milieu favorisé qui tirent davantage profit de son expansion. Par contre, lorsque la formation professionnelle est valorisée, les inégalités auraient plutôt tendance à être modérées.