12 resultados para Kalman, Filmagem de
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
An Ensemble Kalman Filter is applied to assimilate observed tracer fields in various combinations in the Bern3D ocean model. Each tracer combination yields a set of optimal transport parameter values that are used in projections with prescribed CO2 stabilization pathways. The assimilation of temperature and salinity fields yields a too vigorous ventilation of the thermocline and the deep ocean, whereas the inclusion of CFC-11 and radiocarbon improves the representation of physical and biogeochemical tracers and of ventilation time scales. Projected peak uptake rates and cumulative uptake of CO2 by the ocean are around 20% lower for the parameters determined with CFC-11 and radiocarbon as additional target compared to those with salinity and temperature only. Higher surface temperature changes are simulated in the Greenland–Norwegian–Iceland Sea and in the Southern Ocean when CFC-11 is included in the Ensemble Kalman model tuning. These findings highlights the importance of ocean transport calibration for the design of near-term and long-term CO2 emission mitigation strategies and for climate projections.
Resumo:
This paper proposes methods to circumvent the need to attach physical markers to bones for anatomical referencing in computer-assisted orthopedic surgery. Using ultrasound, a bone could be non-invasively referenced, and so the problem is formulated as the need for dynamic registration. A method for correspondence establishment is presented, and the matching step is based on three least-squares algorithms: two that are typically used in registration methods such as ICP, and the third is a form of the Unscented Kalman filter that was adapted to work in this context. A simulation was developed in order to reliably evaluate and compare the dynamic registration methods
Resumo:
[1] In the event of a termination of the Gravity Recovery and Climate Experiment (GRACE) mission before the launch of GRACE Follow-On (due for launch in 2017), high-low satellite-to-satellite tracking (hl-SST) will be the only dedicated observing system with global coverage available to measure the time-variable gravity field (TVG) on a monthly or even shorter time scale. Until recently, hl-SST TVG observations were of poor quality and hardly improved the performance of Satellite Laser Ranging observations. To date, they have been of only very limited usefulness to geophysical or environmental investigations. In this paper, we apply a thorough reprocessing strategy and a dedicated Kalman filter to Challenging Minisatellite Payload (CHAMP) data to demonstrate that it is possible to derive the very long-wavelength TVG features down to spatial scales of approximately 2000 km at the annual frequency and for multi-year trends. The results are validated against GRACE data and surface height changes from long-term GPS ground stations in Greenland. We find that the quality of the CHAMP solutions is sufficient to derive long-term trends and annual amplitudes of mass change over Greenland. We conclude that hl-SST is a viable source of information for TVG and can serve to some extent to bridge a possible gap between the end-of-life of GRACE and the availability of GRACE Follow-On.
Resumo:
A state-of-the-art inverse model, CarbonTracker Data Assimilation Shell (CTDAS), was used to optimize estimates of methane (CH4) surface fluxes using atmospheric observations of CH4 as a constraint. The model consists of the latest version of the TM5 atmospheric chemistry-transport model and an ensemble Kalman filter based data assimilation system. The model was constrained by atmospheric methane surface concentrations, obtained from the World Data Centre for Greenhouse Gases (WDCGG). Prior methane emissions were specified for five sources: biosphere, anthropogenic, fire, termites and ocean, of which bio-sphere and anthropogenic emissions were optimized. Atmospheric CH 4 mole fractions for 2007 from northern Finland calculated from prior and optimized emissions were compared with observations. It was found that the root mean squared errors of the posterior esti - mates were more than halved. Furthermore, inclusion of NOAA observations of CH 4 from weekly discrete air samples collected at Pallas improved agreement between posterior CH 4 mole fraction estimates and continuous observations, and resulted in reducing optimized biosphere emissions and their uncertainties in northern Finland.
Resumo:
Passive positioning systems produce user location information for third-party providers of positioning services. Since the tracked wireless devices do not participate in the positioning process, passive positioning can only rely on simple, measurable radio signal parameters, such as timing or power information. In this work, we provide a passive tracking system for WiFi signals with an enhanced particle filter using fine-grained power-based ranging. Our proposed particle filter provides an improved likelihood function on observation parameters and is equipped with a modified coordinated turn model to address the challenges in a passive positioning system. The anchor nodes for WiFi signal sniffing and target positioning use software defined radio techniques to extract channel state information to mitigate multipath effects. By combining the enhanced particle filter and a set of enhanced ranging methods, our system can track mobile targets with an accuracy of 1.5m for 50% and 2.3m for 90% in a complex indoor environment. Our proposed particle filter significantly outperforms the typical bootstrap particle filter, extended Kalman filter and trilateration algorithms.
Resumo:
Indoor positioning has attracted considerable attention for decades due to the increasing demands for location based services. In the past years, although numerous methods have been proposed for indoor positioning, it is still challenging to find a convincing solution that combines high positioning accuracy and ease of deployment. Radio-based indoor positioning has emerged as a dominant method due to its ubiquitousness, especially for WiFi. RSSI (Received Signal Strength Indicator) has been investigated in the area of indoor positioning for decades. However, it is prone to multipath propagation and hence fingerprinting has become the most commonly used method for indoor positioning using RSSI. The drawback of fingerprinting is that it requires intensive labour efforts to calibrate the radio map prior to experiments, which makes the deployment of the positioning system very time consuming. Using time information as another way for radio-based indoor positioning is challenged by time synchronization among anchor nodes and timestamp accuracy. Besides radio-based positioning methods, intensive research has been conducted to make use of inertial sensors for indoor tracking due to the fast developments of smartphones. However, these methods are normally prone to accumulative errors and might not be available for some applications, such as passive positioning. This thesis focuses on network-based indoor positioning and tracking systems, mainly for passive positioning, which does not require the participation of targets in the positioning process. To achieve high positioning accuracy, we work on some information of radio signals from physical-layer processing, such as timestamps and channel information. The contributions in this thesis can be divided into two parts: time-based positioning and channel information based positioning. First, for time-based indoor positioning (especially for narrow-band signals), we address challenges for compensating synchronization offsets among anchor nodes, designing timestamps with high resolution, and developing accurate positioning methods. Second, we work on range-based positioning methods with channel information to passively locate and track WiFi targets. Targeting less efforts for deployment, we work on range-based methods, which require much less calibration efforts than fingerprinting. By designing some novel enhanced methods for both ranging and positioning (including trilateration for stationary targets and particle filter for mobile targets), we are able to locate WiFi targets with high accuracy solely relying on radio signals and our proposed enhanced particle filter significantly outperforms the other commonly used range-based positioning algorithms, e.g., a traditional particle filter, extended Kalman filter and trilateration algorithms. In addition to using radio signals for passive positioning, we propose a second enhanced particle filter for active positioning to fuse inertial sensor and channel information to track indoor targets, which achieves higher tracking accuracy than tracking methods solely relying on either radio signals or inertial sensors.
Validation of the Swiss methane emission inventory by atmospheric observations and inverse modelling
Resumo:
Atmospheric inverse modelling has the potential to provide observation-based estimates of greenhouse gas emissions at the country scale, thereby allowing for an independent validation of national emission inventories. Here, we present a regional-scale inverse modelling study to quantify the emissions of methane (CH₄) from Switzerland, making use of the newly established CarboCount-CH measurement network and a high-resolution Lagrangian transport model. In our reference inversion, prior emissions were taken from the "bottom-up" Swiss Greenhouse Gas Inventory (SGHGI) as published by the Swiss Federal Office for the Environment in 2014 for the year 2012. Overall we estimate national CH₄ emissions to be 196 ± 18 Gg yr⁻¹ for the year 2013 (1σ uncertainty). This result is in close agreement with the recently revised SGHGI estimate of 206 ± 33 Gg yr⁻¹ as reported in 2015 for the year 2012. Results from sensitivity inversions using alternative prior emissions, uncertainty covariance settings, large-scale background mole fractions, two different inverse algorithms (Bayesian and extended Kalman filter), and two different transport models confirm the robustness and independent character of our estimate. According to the latest SGHGI estimate the main CH₄ source categories in Switzerland are agriculture (78 %), waste handling (15 %) and natural gas distribution and combustion (6 %). The spatial distribution and seasonal variability of our posterior emissions suggest an overestimation of agricultural CH₄ emissions by 10 to 20 % in the most recent SGHGI, which is likely due to an overestimation of emissions from manure handling. Urban areas do not appear as emission hotspots in our posterior results, suggesting that leakages from natural gas distribution are only a minor source of CH₄ in Switzerland. This is consistent with rather low emissions of 8.4 Gg yr⁻¹ reported by the SGHGI but inconsistent with the much higher value of 32 Gg yr⁻¹ implied by the EDGARv4.2 inventory for this sector. Increased CH₄ emissions (up to 30 % compared to the prior) were deduced for the north-eastern parts of Switzerland. This feature was common to most sensitivity inversions, which is a strong indicator that it is a real feature and not an artefact of the transport model and the inversion system. However, it was not possible to assign an unambiguous source process to the region. The observations of the CarboCount-CH network provided invaluable and independent information for the validation of the national bottom-up inventory. Similar systems need to be sustained to provide independent monitoring of future climate agreements.