15 resultados para KRIGING

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, a lot of effort has been spent in the efficient computation of kriging predictors when observations are assimilated sequentially. In particular, kriging update formulae enabling significant computational savings were derived. Taking advantage of the previous kriging mean and variance computations helps avoiding a costly matrix inversion when adding one observation to the TeX already available ones. In addition to traditional update formulae taking into account a single new observation, Emery (2009) proposed formulae for the batch-sequential case, i.e. when TeX new observations are simultaneously assimilated. However, the kriging variance and covariance formulae given in Emery (2009) for the batch-sequential case are not correct. In this paper, we fix this issue and establish correct expressions for updated kriging variances and covariances when assimilating observations in parallel. An application in sequential conditional simulation finally shows that coupling update and residual substitution approaches may enable significant speed-ups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let us consider a large set of candidate parameter fields, such as hydraulic conductivity maps, on which we can run an accurate forward flow and transport simulation. We address the issue of rapidly identifying a subset of candidates whose response best match a reference response curve. In order to keep the number of calls to the accurate flow simulator computationally tractable, a recent distance-based approach relying on fast proxy simulations is revisited, and turned into a non-stationary kriging method where the covariance kernel is obtained by combining a classical kernel with the proxy. Once the accurate simulator has been run for an initial subset of parameter fields and a kriging metamodel has been inferred, the predictive distributions of misfits for the remaining parameter fields can be used as a guide to select candidate parameter fields in a sequential way. The proposed algorithm, Proxy-based Kriging for Sequential Inversion (ProKSI), relies on a variant of the Expected Improvement, a popular criterion for kriging-based global optimization. A statistical benchmark of ProKSI’s performances illustrates the efficiency and the robustness of the approach when using different kinds of proxies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Responses of many real-world problems can only be evaluated perturbed by noise. In order to make an efficient optimization of these problems possible, intelligent optimization strategies successfully coping with noisy evaluations are required. In this article, a comprehensive review of existing kriging-based methods for the optimization of noisy functions is provided. In summary, ten methods for choosing the sequential samples are described using a unified formalism. They are compared on analytical benchmark problems, whereby the usual assumption of homoscedastic Gaussian noise made in the underlying models is meet. Different problem configurations (noise level, maximum number of observations, initial number of observations) and setups (covariance functions, budget, initial sample size) are considered. It is found that the choices of the initial sample size and the covariance function are not critical. The choice of the method, however, can result in significant differences in the performance. In particular, the three most intuitive criteria are found as poor alternatives. Although no criterion is found consistently more efficient than the others, two specialized methods appear more robust on average.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several strategies relying on kriging have recently been proposed for adaptively estimating contour lines and excursion sets of functions under severely limited evaluation budget. The recently released R package KrigInv 3 is presented and offers a sound implementation of various sampling criteria for those kinds of inverse problems. KrigInv is based on the DiceKriging package, and thus benefits from a number of options concerning the underlying kriging models. Six implemented sampling criteria are detailed in a tutorial and illustrated with graphical examples. Different functionalities of KrigInv are gradually explained. Additionally, two recently proposed criteria for batch-sequential inversion are presented, enabling advanced users to distribute function evaluations in parallel on clusters or clouds of machines. Finally, auxiliary problems are discussed. These include the fine tuning of numerical integration and optimization procedures used within the computation and the optimization of the considered criteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kriging-based optimization relying on noisy evaluations of complex systems has recently motivated contributions from various research communities. Five strategies have been implemented in the DiceOptim package. The corresponding functions constitute a user-friendly tool for solving expensive noisy optimization problems in a sequential framework, while offering some flexibility for advanced users. Besides, the implementation is done in a unified environment, making this package a useful device for studying the relative performances of existing approaches depending on the experimental setup. An overview of the package structure and interface is provided, as well as a description of the strategies and some insight about the implementation challenges and the proposed solutions. The strategies are compared to some existing optimization packages on analytical test functions and show promising performances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stepwise uncertainty reduction (SUR) strategies aim at constructing a sequence of points for evaluating a function  f in such a way that the residual uncertainty about a quantity of interest progressively decreases to zero. Using such strategies in the framework of Gaussian process modeling has been shown to be efficient for estimating the volume of excursion of f above a fixed threshold. However, SUR strategies remain cumbersome to use in practice because of their high computational complexity, and the fact that they deliver a single point at each iteration. In this article we introduce several multipoint sampling criteria, allowing the selection of batches of points at which f can be evaluated in parallel. Such criteria are of particular interest when f is costly to evaluate and several CPUs are simultaneously available. We also manage to drastically reduce the computational cost of these strategies through the use of closed form formulas. We illustrate their performances in various numerical experiments, including a nuclear safety test case. Basic notions about kriging, auxiliary problems, complexity calculations, R code, and data are available online as supplementary materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several methods based on Kriging have recently been proposed for calculating a probability of failure involving costly-to-evaluate functions. A closely related problem is to estimate the set of inputs leading to a response exceeding a given threshold. Now, estimating such a level set—and not solely its volume—and quantifying uncertainties on it are not straightforward. Here we use notions from random set theory to obtain an estimate of the level set, together with a quantification of estimation uncertainty. We give explicit formulae in the Gaussian process set-up and provide a consistency result. We then illustrate how space-filling versus adaptive design strategies may sequentially reduce level set estimation uncertainty.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We focus on kernels incorporating different kinds of prior knowledge on functions to be approximated by Kriging. A recent result on random fields with paths invariant under a group action is generalised to combinations of composition operators, and a characterisation of kernels leading to random fields with additive paths is obtained as a corollary. A discussion follows on some implications on design of experiments, and it is shown in the case of additive kernels that the so-called class of “axis designs” outperforms Latin hypercubes in terms of the IMSE criterion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the context of expensive numerical experiments, a promising solution for alleviating the computational costs consists of using partially converged simulations instead of exact solutions. The gain in computational time is at the price of precision in the response. This work addresses the issue of fitting a Gaussian process model to partially converged simulation data for further use in prediction. The main challenge consists of the adequate approximation of the error due to partial convergence, which is correlated in both design variables and time directions. Here, we propose fitting a Gaussian process in the joint space of design parameters and computational time. The model is constructed by building a nonstationary covariance kernel that reflects accurately the actual structure of the error. Practical solutions are proposed for solving parameter estimation issues associated with the proposed model. The method is applied to a computational fluid dynamics test case and shows significant improvement in prediction compared to a classical kriging model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article addresses the issue of kriging-based optimization of stochastic simulators. Many of these simulators depend on factors that tune the level of precision of the response, the gain in accuracy being at a price of computational time. The contribution of this work is two-fold: first, we propose a quantile-based criterion for the sequential design of experiments, in the fashion of the classical expected improvement criterion, which allows an elegant treatment of heterogeneous response precisions. Second, we present a procedure for the allocation of the computational time given to each measurement, allowing a better distribution of the computational effort and increased efficiency. Finally, the optimization method is applied to an original application in nuclear criticality safety. This article has supplementary material available online. The proposed criterion is available in the R package DiceOptim.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stable oxygen isotope composition of atmospheric precipitation (δ18Op) was scrutinized from 39 stations distributed over Switzerland and its border zone. Monthly amount-weighted δ18Op values averaged over the 1995–2000 period showed the expected strong linear altitude dependence (−0.15 to −0.22‰ per 100 m) only during the summer season (May–September). Steeper gradients (~ −0.56 to −0.60‰ per 100 m) were observed for winter months over a low elevation belt, while hardly any altitudinal difference was seen for high elevation stations. This dichotomous pattern could be explained by the characteristically shallower vertical atmospheric mixing height during winter season and provides empirical evidence for recently simulated effects of stratified atmospheric flow on orographic precipitation isotopic ratios. This helps explain "anomalous" deflected altitudinal water isotope profiles reported from many other high relief regions. Grids and isotope distribution maps of the monthly δ18Op have been calculated over the study region for 1995–1996. The adopted interpolation method took into account both the variable mixing heights and the seasonal difference in the isotopic lapse rate and combined them with residual kriging. The presented data set allows a point estimation of δ18Op with monthly resolution. According to the test calculations executed on subsets, this biannual data set can be extended back to 1992 with maintained fidelity and, with a reduced station subset, even back to 1983 at the expense of faded reliability of the derived δ18Op estimates, mainly in the eastern part of Switzerland. Before 1983, reliable results can only be expected for the Swiss Plateau since important stations representing eastern and south-western Switzerland were not yet in operation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multi-objective optimization algorithms aim at finding Pareto-optimal solutions. Recovering Pareto fronts or Pareto sets from a limited number of function evaluations are challenging problems. A popular approach in the case of expensive-to-evaluate functions is to appeal to metamodels. Kriging has been shown efficient as a base for sequential multi-objective optimization, notably through infill sampling criteria balancing exploitation and exploration such as the Expected Hypervolume Improvement. Here we consider Kriging metamodels not only for selecting new points, but as a tool for estimating the whole Pareto front and quantifying how much uncertainty remains on it at any stage of Kriging-based multi-objective optimization algorithms. Our approach relies on the Gaussian process interpretation of Kriging, and bases upon conditional simulations. Using concepts from random set theory, we propose to adapt the Vorob’ev expectation and deviation to capture the variability of the set of non-dominated points. Numerical experiments illustrate the potential of the proposed workflow, and it is shown on examples how Gaussian process simulations and the estimated Vorob’ev deviation can be used to monitor the ability of Kriging-based multi-objective optimization algorithms to accurately learn the Pareto front.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The FANOVA (or “Sobol’-Hoeffding”) decomposition of multivariate functions has been used for high-dimensional model representation and global sensitivity analysis. When the objective function f has no simple analytic form and is costly to evaluate, computing FANOVA terms may be unaffordable due to numerical integration costs. Several approximate approaches relying on Gaussian random field (GRF) models have been proposed to alleviate these costs, where f is substituted by a (kriging) predictor or by conditional simulations. Here we focus on FANOVA decompositions of GRF sample paths, and we notably introduce an associated kernel decomposition into 4 d 4d terms called KANOVA. An interpretation in terms of tensor product projections is obtained, and it is shown that projected kernels control both the sparsity of GRF sample paths and the dependence structure between FANOVA effects. Applications on simulated data show the relevance of the approach for designing new classes of covariance kernels dedicated to high-dimensional kriging.