132 resultados para KENNEDY PATHWAY
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Phosphatidylethanolamine is a major phospholipid class of all eukaryotic cells. It can be synthesized via the CDP-ethanolamine branch of the Kennedy pathway, by decarboxylation of phosphatidylserine, or by base exchange with phosphatidylserine. The contributions of these pathways to total phosphatidylethanolamine synthesis have remained unclear. Although Trypanosoma brucei, the causative agent of human and animal trypanosomiasis, has served as a model organism to elucidate the entire reaction sequence for glycosylphosphatidylinositol biosynthesis, the pathways for the synthesis of the major phospholipid classes have received little attention. We now show that disruption of the CDP-ethanolamine branch of the Kennedy pathway using RNA interference results in dramatic changes in phosphatidylethanolamine, phosphatidylserine, and phosphatidylcholine. By targeting individual enzymes of the pathway, we demonstrate that de novo phosphatidylethanolamine synthesis in T. brucei procyclic forms is strictly dependent on the CDP-ethanolamine route. Interestingly, the last step in the Kennedy pathway can be mediated by two separate activities leading to two distinct pools of phosphatidylethanolamine, consisting of predominantly alk-1-enyl-acyl- or diacyl-type molecular species. In addition, we show that phosphatidylserine in T. brucei procyclic forms is synthesized exclusively by base exchange with phosphatidylethanolamine.
Resumo:
Phosphatidylethanolamine (PE) and phosphatidylcholine (PC) are among the most abundant phospholipids in biological membranes. In many eukaryotes, the CDP-ethanolamine and CDP-choline branches of the Kennedy pathway represent major and often essential routes for the production of PE and PC, with ethanolamine and choline/ethanolamine phosphotransferases (EPT and CEPT, respectively) catalysing the last reactions in the respective pathways. Although the site of PE and PC synthesis is commonly known to be the endoplasmic reticulum (ER), detailed information on the localization of the different phosphotransferases is lacking. In the unicellular parasite, Trypanosoma brucei, both branches of the Kennedy pathway are essential for cell growth in culture. We have previously reported that T. brucei EPT (TbEPT) catalyses the production of ether-type PE molecular species while T. brucei CEPT (TbCEPT) synthesizes diacyl-type PE and PC molecular species. We now show that the two enzymes localize to different sub-compartments of the ER. By expressing a series of tagged forms of the two enzymes in T. brucei parasites, in combination with sub-cellular fractionation and enzyme activity measurements, TbEPT was found exclusively in the perinuclear ER, a distinct area located close to but distinct from the nuclear membrane. In contrast, TbCEPT was detected in the bulk ER.
Resumo:
In addition to its conventional role during protein synthesis, eukaryotic elongation factor 1A is involved in other cellular processes. Several regions of interaction between eukaryotic elongation factor 1A and the translational apparatus or the cytoskeleton have been identified, yet the roles of the different post-translational modifications of eukaryotic elongation factor 1A are completely unknown. One amino acid modification, which so far has only been found in eukaryotic elongation factor 1A, consists of ethanolamine-phosphoglycerol attached to two glutamate residues that are conserved between mammals and plants. We now report that ethanolamine-phosphoglycerol is also present in eukaryotic elongation factor 1A of the protozoan parasite Trypanosoma brucei, indicating that this unique protein modification is of ancient origin. In addition, using RNA-mediated gene silencing against enzymes of the Kennedy pathway, we demonstrate that phosphatidylethanolamine is a direct precursor of the ethanolamine-phosphoglycerol moiety. Down-regulation of the expression of ethanolamine kinase and ethanolamine-phosphate cytidylyltransferase results in inhibition of phosphatidylethanolamine synthesis in T. brucei procyclic forms and, concomitantly, in a block in glycosylphosphatidylinositol attachment to procyclins and ethanolamine-phosphoglycerol modification of eukaryotic elongation factor 1A.
Resumo:
Phosphatidylethanolamine (PE) and phosphatidylcholine (PC) are the two major constituents of eukaryotic cell membranes. In the protist Trypanosoma brucei, PE and PC are synthesized exclusively via the Kennedy pathway. To determine which organelles or processes are most sensitive to a disruption of normal phospholipid levels, the cellular consequences of a decrease in the levels of PE or PC, respectively, were studied following RNAi knock-down of four enzymes of the Kennedy pathway. RNAi against ethanolamine-phosphate cytidylyltransferase (ET) disrupted mitochondrial morphology and ultrastructure. Electron microscopy revealed alterations of inner mitochondrial membrane morphology, defined by a loss of disk-like cristae. Despite the structural changes in the mitochondrion, the cells maintained oxidative phosphorylation. Our results indicate that the inner membrane morphology of T. brucei procyclic forms is highly sensitive to a decrease of PE levels, as a change in the ultrastructure of the mitochondrion is the earliest phenotype observed after RNAi knock-down of ET. Interference with phospholipid synthesis also impaired normal cell-cycle progression. ET RNAi led to an accumulation of multinucleate cells. In contrast, RNAi against choline-/ethanolamine phosphotransferase, which affected PC as well as PE levels, caused a cell division phenotype characterized by non-division of the nucleus and production of zoids.
Resumo:
Adaptive immune responses are characterized by substantial restructuring of secondary lymphoid organs. The molecular and cellular factors responsible for virus-induced lymphoid remodeling are not well known to date. Here we applied optical projection tomography, a mesoscopic imaging technique, for a global analysis of the entire 3-dimensional structure of mouse peripheral lymph nodes (PLNs), focusing on B-cell areas and high endothelial venule (HEV) networks. Structural homeostasis of PLNs was characterized by a strict correlation between total PLN volume, B-cell volume, B-cell follicle number, and HEV length. After infection with lymphocytic choriomeningitis virus, we observed a substantial, lymphotoxin (LT) beta-receptor-dependent reorganization of the PLN microarchitecture, in which an initial B-cell influx was followed by 3-fold increases in PLN volume and HEV network length on day 8 after infection. Adoptive transfer experiments revealed that virus-induced PLN and HEV network remodeling required LTalpha(1)beta(2)-expressing B cells, whereas the inhibition of vascular endothelial growth factor-A signaling pathways had no significant effect on PLN expansion. In summary, lymphocytic choriomeningitis virus-induced PLN growth depends on a vascular endothelial growth factor-A-independent, LT- and B cell-dependent morphogenic pathway, as revealed by an in-depth mesoscopic analysis of the global PLN structure.
Resumo:
Pneumococcal meningitis causes neurological sequelae, including learning and memory deficits in up to half of the survivors. In both humans and in animal models of the disease, there is apoptotic cell death in the hippocampus, a brain region involved in learning and memory function. We previously demonstrated that in an infant rat model of pneumococcal meningitis, there is activation of the kynurenine (KYN) pathway in the hippocampus, and that there was a positive correlation between the concentration of 3-hydroxykynurenine and the extent of hippocampal apoptosis. To clarify the role of the KYN pathway in the pathogenesis of hippocampal apoptosis in pneumococcal meningitis, we specifically inhibited 2 key enzymes of the KYN pathway and assessed hippocampal apoptosis, KYN pathway metabolites, and nicotinamide adenine dinucleotide (NAD) concentrations by high-performance liquid chromatography. Pharmacological inhibition of kynurenine 3-hydroxylase and kynureninase led to decreased cellular NAD levels and increased apoptosis in the hippocampus. The cerebrospinal fluid levels of tumor necrosis factor and interleukin-1? and -? were not affected. Our data suggest that activation of the KYN pathway in pneumococcal meningitis is neuroprotective by compensating for an increased NAD demand caused by infection and inflammation;this mechanism may prevent energy failure and apoptosis in the hippocampus.
Resumo:
Inheritance of a mutant allele of the von Hippel-Lindau tumor suppressor gene predisposes affected individuals to develop renal cysts and clear cell renal cell carcinoma. Von Hippel-Lindau gene inactivation in single renal tubular cells has indirectly been showed by immunohistochemical staining for the hypoxia-inducible factor alpha target gene product carbonic anhydrase IX. In this study we were able to show von Hippel-Lindau gene deletion in carbonic anhydrase IX positive nonneoplastic renal tubular cells, in epithelial cells lining renal cysts and in a clear cell renal cell carcinoma of a von Hippel-Lindau patient. This was carried out by means of laser confocal microscopy and immunohistochemistry in combination with fluorescence in situ hybridization. Carbonic anhydrase IX negative normal renal tubular cells carried no von Hippel-Lindau gene deletion. Furthermore, recent studies have indicated that the von Hippel-Lindau gene product is necessary for the maintenance of primary cilia stability in renal epithelial cells and that disruption of the cilia structure by von Hippel-Lindau gene inactivation induces renal cyst formation. In our study, we show a significant shortening of primary cilia in epithelial cells lining renal cysts, whereas, single tubular cells with a von Hippel-Lindau gene deletion display to a far lesser extent signs of cilia shortening. Our in vivo results support a model in which renal cysts represent precursor lesions for clear cell renal cell carcinoma and arise from single renal tubular epithelial cells owing to von Hippel-Lindau gene deletion.
Resumo:
Exercise induces a pleiotropic adaptive response in skeletal muscle, largely through peroxisome proliferator-activated receptor coactivator 1 (PGC-1 ). PGC-1 enhances lipid oxidation and thereby provides energy for sustained muscle contraction. Its potential implication in promoting muscle refueling remains unresolved, however. Here, we investigated a possible role of elevated PGC-1 levels in skeletal muscle lipogenesis in vivo and the molecular mechanisms that underlie PGC-1 -mediated de novo lipogenesis. To this end, we studied transgenic mice with physiological overexpression of PGC-1 and human muscle biopsies pre- and post-exercise. We demonstrate that PGC-1 enhances lipogenesis in skeletal muscle through liver X receptor -dependent activation of the fatty acid synthase (FAS) promoter and by increasing FAS activity. Using chromatin immunoprecipitation, we establish a direct interaction between PGC-1 and the liver X receptor-responsive element in the FAS promoter. Moreover, we show for the first time that increased glucose uptake and activation of the pentose phosphate pathway provide substrates for RNA synthesis and cofactors for de novo lipogenesis. Similarly, we observed increased lipogenesis and lipid levels in human muscle biopsies that were obtained post-exercise. Our findings suggest that PGC-1 coordinates lipogenesis, intramyocellular lipid accumulation, and substrate oxidation in exercised skeletal muscle in vivo.
Resumo:
The proliferation signal inhibitors (PSIs) sirolimus (SRL) and everolimus (ERL) often induce proteinuria due to glomerular but also tubular dysfunction in transplant patients. The beneficial effect of angiotensin converting enzyme inhibitors (ACE-I) and angiotensin II (Ang II) type 1 receptor blockers (ARB) has been reported.
Resumo:
Experimental tissue fusion benefits from the selective heating of superparamagnetic iron oxide nanoparticles (SPIONs) under high frequency irradiation. However, the metabolic pathways of SPIONs for tissue fusion remain unknown. Hence, the goal of this in vivo study was to analyze the distribution of SPIONs in different organs by means of magnetic resonance imaging (MRI) and histological analysis after a SPION-containing patch implantation.