9 resultados para K-CL COTRANSPORTER
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
It has long been stated that the K(+)-Cl(-) cotransporters (KCCs) are activated during cell swelling through dephosphorylation of their cytoplasmic domains by a protein phosphatase (PP) but that other enzymes are involved by targeting this PP or the KCCs directly. To date, however, the role of signaling intermediates in KCC regulation has been deduced from indirect evidence rather than in vitro phosphorylation studies, and examined after simulation of ion transport through cell swelling or N-ethylmaleimide treatment. In this study, the oocyte expression system was used to examine the effects of changes in cell volume (C(VOL)) and intracellular [Cl(-)] ([Cl(-)](i)) on the activity and phosphorylation levels (P(LEV)) of KCC4, and determine whether these effects are mediated by PP1 or phorbol myristate acetate (PMA)-sensitive effectors. We found that (1) low [Cl(-)](i) or low C(VOL) leads to decreased activity but increased P(LEV), (2) high C(VOL) leads to increased activity but no decrease in P(LEV) and (3) calyculin A (Cal A) or PMA treatment leads to decreased activity but no increase in P(LEV). Thus, we have shown for the first time that one of the KCCs can be regulated through direct phosphorylation, that changes in [Cl(-)](i) or C(VOL) modify the activity of signaling enzymes at carrier sites, and that the effectors directly involved do not include a Cal A-sensitive PP in contrast to the widely held view. J. Cell. Physiol. 219: 787-796, 2009. (c) 2009 Wiley-Liss, Inc.
Resumo:
Guidelines on the diagnosis and management of urinary tract infections in childhood do not address the issue of abnormalities in Na(+), K(+), Cl(-) and acid-base balance. We have conducted a narrative review of the literature with the aim to describe the underlying mechanisms of these abnormalities and to suggest therapeutic maneuvers. Abnormalities in Na(+), K(+), Cl(-) and acid-base balance are common in newborns and infants and uncommon in children of more than 3 years of age. Such abnormalities may result from factitious laboratory results, from signs and symptoms (such as excessive sweating, poor fluid intake, vomiting and passage of loose stools) of the infection itself, from a renal dysfunction, from improper parenteral fluid management or from the prescribed antimicrobials. In addition, two transient renal tubular dysfunctions may occur in infants with infectious renal parenchymal involvement: a reduced capacity to concentrate urine and pseudohypoaldosteronism secondary to renal tubular unresponsiveness to aldosterone that presents with hyponatremia, hyperkalemia and acidosis. In addition to antimicrobials, volume resuscitation with an isotonic solution is required in these children. In secondary pseudohypoaldosteronism, isotonic solutions (such as 0.9 % saline or lactated Ringer) correct not only the volume depletion but also the hyperkalemia and acidosis. In conclusion, our review suggests that in infants with infectious renal parenchymal involvement, non-renal and renal causes concur to cause fluid volume depletion and abnormalities in electrolyte and acid-base balance, most frequently hyponatremia.
Resumo:
The significance of the multi-isotopic record preserved in K-feldspars is assessed on samples from the Aar metagranite, Central Alps, Switzerland having very tight independent geological constraints. Stepwise leaching reveals that two diachronically grown K-feldspar generations coexist: Kfs-1 (≥ 35 Ma old, Ca-poor, Rb-Cl-rich, with low 87Sr/86Sr and high 206Pb/204Pb) and Kfs-2 (≤ 10 Ma old, antithetic isotopic signatures deriving from external fluids). Microtextures imaged by cathodoluminescence, backscattered electrons, and electron probe microanalysis are patchy and chemically heterogeneous, with pronounced enrichments in Ba in the retrogressed regions. This confirms the simultaneous presence of fluid-dominated retrogression and recrystallization and isotopic inheritance. The staircase-shaped 40Ar/39Ar age spectrum correlates with the Ca/K and Cl/K signatures. This reflects a mixture of heterochemical K-feldspar generations, and not an intracrystalline Ar gradient caused by diffusion. The shape of the age spectrum and the in vacuo release kinetics proceed from entirely different physical and geological phenomena. What K-feldspars can be effectively used for is to constrain the timing of the fluids that interacted with them by multi-isotopic analyses, rather than to model a “cooling history” from 39Ar release alone. The identification of multiple mineral generations by imaging combined with multi-isotopic analysis enables the accurate dating of the events of a multistage evolution after the initial crystallization of the rock in which the minerals occur.
Resumo:
The chloride and sulfate concentration profiles in a 260 m thick clay-rich Mesozoic sediment sequence have been analyzed by various methods. Chloride data generally indicate a good consistency between different methods if anion exclusion is accounted for in leaching tests. For sulfate, however, there is an apparent inconsistency between leaching data and those obtained from the other methods, which points to the dissolution of a sulfur-bearing mineral. Traces of diagenetic gypsum seem to be a likely source, but other sulfur minerals cannot be ruled out.
Resumo:
We measured the concentrations and isotopic compositions of He, Ne, and Ar in bulk samples and metal separates of 14 ordinary chondrite falls with long exposure ages and high metamorphic grades. In addition, we measured concentrations of the cosmogenic radionuclides 10Be, 26Al, and 36Cl in metal separates and in the nonmagnetic fractions of the selected meteorites. Using cosmogenic 36Cl and 36Ar measured in the metal separates, we determined 36Cl-36Ar cosmic-ray exposure (CRE) ages, which are shielding-independent and therefore particularly reliable. Using the cosmogenic noble gases and radionuclides, we are able to decipher the CRE history for the studied objects. Based on the correlation 3He/21Ne versus 22Ne/21Ne, we demonstrate that, among the meteorites studied, only one suffered significant diffusive losses (about 35%). The data confirm that the linear correlation 3He/21Ne versus 22Ne/21Ne breaks down at high shielding. Using 36Cl-36Ar exposure ages and measured noble gas concentrations, we determine 21Ne and 38Ar production rates as a function of 22Ne/21Ne. The new data agree with recent model calculations for the relationship between 21Ne and 38Ar production rates and the 22Ne/21Ne ratio, which does not always provide unique shielding information. Based on the model calculations, we determine a new correlation line for 21Ne and 38Ar production rates as a function of the shielding indicator 22Ne/21Ne for H, L, and LL chondrites with preatmospheric radii less than about 65 cm. We also calculated the 10Be/21Ne and 26Al/21Ne production rate ratios for the investigated samples, which show good agreement with recent model calculations.
Resumo:
We calibrated the ⁸¹Kr-Kr dating system for ordinary chondrites of different sizes using independent shielding-corrected ³⁶Cl-³⁶Ar ages. Krypton concentrations and isotopic compositions were measured in bulk samples from 14 ordinary chondrites of high petrologic type and the cosmogenic Kr component was obtained by subtracting trapped Kr from phase Q. The thus-determined average cosmogenic ⁷⁸Kr/⁸³Kr, ⁸⁰Kr/⁸³Kr, ⁸²Kr/⁸³Kr, and ⁸4Kr/⁸³Kr ratiC(Lavielle and Marti 1988; Wieler 2002). The cosmogenic ⁷⁸Kr/⁸³Kr ratio is correlated with the cosmogenic 22Ne/21Ne ratio, confirming that ⁷⁸Kr/⁸³Kr is a reliable shielding indicator. Previously, ⁸¹Kr-Kr ages have been determined by assuming the cosmogenic production rate of ⁸¹Kr, P(⁸¹Kr)c, to be 0.95 times the average of the cosmogenic production rates of ⁸⁰Kr and ⁸²Kr; the factor Y = 0.95 therefore accounts for the unequal production of the various Kr isotopes (Marti 1967a). However, Y should be regarded as an empirical adjustment. For samples whose ⁸⁰Kr and ⁸²Kr concentrations may be affected by neutron-capture reactions, the shielding-dependent cosmogenic (⁷⁸Kr/⁸³Kr)c ratio has been used instead to calculate P(⁸¹Kr)/P(⁸³Kr), as for some lunar samples, this ratio has been shown to linearly increase with (⁷⁸Kr/⁸³Kr)c (Marti and Lugmair 1971). However, the ⁸¹Kr-Kr ages of our samples calculated with these methods are on average ~30% higher than their ³⁶Cl-³⁶Ar ages, indicating that most if not all the ⁸¹Kr-Kr ages determined so far are significantly too high. We therefore re-evaluated both methods to determine P(⁸¹Kr)c/P(⁸³Kr)c. Our new Y value of 0.70 ± 0.04 is more than 25% lower than the value of 0.95 used so far. Furthermore, together with literature data, our data indicate that for chondrites, P(⁸¹Kr)c/P(⁸³Kr)c is rather constant at 0.43 ± 0.02, at least for the shielding range covered by our samples ([⁷⁸Kr/⁸³Kr]c = 0.119–0.185; [22Ne/21Ne]c = 1.083–1.144), in contrast to the observations on lunar samples. As expected considering the method used, ⁸¹Kr-Kr ages calculated either directly with this new P(⁸¹Kr)c/P(⁸³Kr)c value or with our new Y value both agree with the corresponding ³⁶Cl-³⁶Ar ages. However, the average deviation of 2% indicates the accuracy of both new ⁸¹Kr-Kr dating methods and the precision of the new dating systems of ~10% is demonstrated by the low scatter in the data. Consequently, this study indicates that the ⁸¹Kr-Kr ages published so far are up to 30% too high.