181 resultados para Josef Pieper
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Sphingosine-1-phosphate (S1P) acts as high affinity agonist at specific G-protein-coupled receptors, S1P(1-5), that play important roles e.g. in the cardiovascular and immune systems. A S1P receptor modulating drug, FTY720 (fingolimod), has been effective in phase III clinical trials for multiple sclerosis. FTY720 is a sphingosine analogue and prodrug of FTY720-phosphate, which activates all S1P receptors except S1P(2) and disrupts lymphocyte trafficking by internalizing the S1P(1) receptor. Cis-4-methylsphingosine (cis-4M-Sph) is another synthetic sphingosine analogue that is readily taken up by cells and phosphorylated to cis-4-methylsphingosine-1-phosphate (cis-4M-S1P). Therefore, we analysed whether cis-4M-Sph interacted with S1P receptors through its metabolite cis-4M-S1P in a manner similar to FTY720. Indeed, cis-4M-Sph caused an internalization of S1P receptors, but differed from FTY720 as it acted on S1P(2) and S1P(3) and only weakly on S1P(1), while FTY720 internalized S1P(1) and S1P(3) but not S1P(2). Consequently, pre-incubation with cis-4M-Sph specifically desensitized S1P-induced [Ca(2+)](i) increases, which are mediated by S1P(2) and S1P(3), in a time- and concentration-dependent manner. This effect was not shared by sphingosine or FTY720, indicating that metabolic stability and targeting of S1P(2) receptors were important. The desensitization of S1P-induced [Ca(2+)](i) increases was dependent on the expression of SphKs, predominantly of SphK2, and thus mediated by cis-4M-S1P. In agreement, cis-4M-S1P was detected in the supernatants of cells exposed to cis-4M-Sph. It is concluded that cis-4M-Sph, through its metabolite cis-4M-S1P, acts as a S1P receptor modulator and causes S1P receptor internalization and desensitization. The data furthermore help to define requirements for sphingosine kinase substrates as S1P receptor modulating prodrugs.
Resumo:
Sphingosine kinases (SKs) convert sphingosine to sphingosine 1-phosphate (S1P), which is a bioactive lipid that regulates a variety of cellular processes including proliferation, differentiation and migration.
Resumo:
During sepsis, activation of phagocytes leads to the overproduction of proinflammatory cytokines, causing systemic inflammation. Despite substantial information regarding the underlying molecular mechanisms that lead to sepsis, several elements in the pathway remain to be elucidated. We found that the enzyme sphingosine kinase 1 (SphK1) is up-regulated in stimulated human phagocytes and in peritoneal phagocytes of patients with severe sepsis. Blockade of SphK1 inhibited phagocyte production of endotoxin-induced proinflammatory cytokines. We observed protection against sepsis in mice treated with a specific SphK1 inhibitor that was enhanced by treatment with a broad-spectrum antibiotic. These results demonstrated a critical role for SphK1 in endotoxin signaling and sepsis-induced inflammatory responses and suggest that inhibition of SphK1 is a potential therapy for septic shock.
Resumo:
Sphingosine kinase 1 (SK1) is a key enzyme in the generation of sphingosine 1-phosphate (S1P) which critically regulates a variety of important cell responses such as proliferation and migration. Therefore, inhibition of SK-1 has been suggested to be an attractive approach to treat tumor growth and metastasis formation.
Resumo:
Neutral ceramidase (NCDase) and sphingosine kinases (SphKs) are key enzymes regulating cellular sphingosine-1-phosphate (S1P) levels. In this study we found that stress factor-induced apoptosis of rat renal mesangial cells was significantly reduced by dexamethasone treatment. Concomitantly, dexamethasone increased cellular S1P levels, suggesting an activation of sphingolipid-metabolizing enzymes. The cell-protective effect of glucocorticoids was reversed by a SphK inhibitor, was completely absent in SphK1-deficient cells, and was associated with upregulated mRNA and protein expression of NCDase and SphK1. Additionally, in vivo experiments in mice showed that dexamethasone also upregulated SphK1 mRNA and activity, and NCDase protein expression in the kidney. Fragments (2285, 1724, and 1126 bp) of the rat NCDase promoter linked to a luciferase reporter were transfected into rat kidney fibroblasts and mesangial cells. There was enhanced NCDase promoter activity upon glucocorticoids treatment that was abolished by the glucocorticoid receptor antagonist RU-486. Single and double mutations of the two putative glucocorticoid response element sites within the promoter reduced the dexamethasone effect, suggesting that both glucocorticoid response elements are functionally active and required for induction. Our study shows that glucocorticoids exert a protective effect on stress-induced mesangial cell apoptosis in vitro and in vivo by upregulating NCDase and SphK1 expression and activity, resulting in enhanced levels of the protective lipid second messenger S1P.
Resumo:
The scope of this work was to examine in vitro responses of lung cells to secondary organic aerosol (SOA) particles, under realistic ambient air and physiological conditions occurring when particles are inhaled by mammals, using a novel particle deposition chamber. The cell cultures included cell types that are representative for the inner surface of airways and alveoli and are the target cells for inhaled particles. The results demonstrate that an exposure to SOA at ambient-air concentrations of about 10(4) particles/cm(3) for 2 h leads to only moderate cellular responses. There is evidence for (i) cell type specific effects and for (ii) different effects of SOA originating from anthropogenic and biogenic precursors, i.e. 1,3,5-trimethylbenzene (TMB) and alpha-pinene, respectively. There was no indication for cytotoxic effects but for subtle changes in cellular functions that are essential for lung homeostasis. Decreased phagocytic activity was found in human macrophages exposed to SOA from alpha-pinene. Alveolar epithelial wound repair was affected by TMB-SOA exposure, mainly because of altered cell spreading and migration at the edge of the wound. In addition, cellular responses were found to correlate with particle number concentration, as interleukin-8 production was increased in pig explants exposed to TMB-SOA with high particle numbers.
Resumo:
Objective: Significant others are central to patients' experience and management of their cancer illness. Building on our validation of the Distress Thermometer (DT) for family members, this investigation examines individual and collective distress in a sample of cancer patients and their matched partners, accounting for the aspects of gender and role. Method: Questionnaires including the DT were completed by a heterogeneous sample of 224 couples taking part in a multisite study. Results: Our investigation showed that male patients (34.2%), female patients (31.9%), and male partners (29.1%) exhibited very similar levels of distress, while female partners (50.5%) exhibited much higher levels of distress according to the DT. At the dyad level just over half the total sample contained at least one individual reporting significant levels of distress. Among dyads with at least one distressed person, the proportion of dyads where both individuals reported distress was greatest (23.6%). Gender and role analyses revealed that males and females were not equally distributed among the four categories of dyads (i.e. dyads with no distress; dyads where solely the patient or dyads where solely the partner is distressed; dyads where both are distressed). Conclusion: A remarkable number of dyads reported distress in one or both partners. Diverse patterns of distress within dyads suggest varying risks of psychosocial strain. Screening patients' partners in addition to patients themselves may enable earlier identification of risk settings. The support offered to either member of such dyads should account for their role- and gender-specific needs. Copyright © 2010 John Wiley ; Sons, Ltd.
Resumo:
Little is known about factors influencing positive effects in couples facing a cancer diagnosis.
Resumo:
In patients with ventricular tachycardia (VT) and a history of myocardial infarction, intervention with an implantable cardioverter defibrillator (ICD) can prevent sudden cardiac death and thereby reduce total mortality. However, ICD shocks are painful and do not provide complete protection against sudden cardiac death. We assessed the potential benefit of catheter ablation before implantation of a cardioverter defibrillator.