6 resultados para Joint Stability

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND The critical shoulder angle combines the acromion index and glenoid inclination and has potential to discriminate between shoulders at risk for rotator cuff tear or osteoarthritis and those that are asymptomatic. However, its biomechanics, and particularly the role of the glenoid inclination, are not yet fully understood. METHODS A shoulder simulator was used to analyze the independent influence of glenoid inclination during abduction from 0 to 60°. Spindle motors transferred tension forces by a cable-pulley on human cadaveric humeri. A six-degree-of-freedom force transducer was mounted directly behind the polyethylene glenoid to measure shear and compressive joint reaction force and calculate the instability ratio (ratio of shear and compressive joint reaction force) with the different force ratios of the deltoid and supraspinatus muscles (2:1 and 1:1). A stepwise change in the inclination by 5° increments allowed simulation of a critical shoulder angle range of 20° to 45°. FINDINGS Tilting the glenoid to cranial (increasing the critical shoulder angle) increases the shear joint reaction force and therefore the instability ratio. A balanced force ratio (1:1) between the deltoid and the supraspinatus allowed larger critical shoulder angles before cranial subluxation occurred than did the deltoid-dominant ratio (2:1). INTERPRETATION Glenoid inclination-dependent changes of the critical shoulder angle have a significant impact on superior glenohumeral joint stability. The increased compensatory activity of the rotator cuff to keep the humeral head centered may lead to mechanical overload and could explain the clinically observed association between large angles and degenerative rotator cuff tears.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The acetabular labrum plays an important role in hip joint stability and protection of the articular cartilage of the hip. Despite this, few investigators have evaluated its microscopic vasculature and, to our knowledge, none has assessed its macroscopic blood supply. The purposes of this study were to identify the origin and course of the vascular supply to the acetabular labrum to determine if this blood supply is affected by a labral tear.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ligament balancing in total knee arthroplasty may have an important influence on joint stability and prosthesis lifetime. In order to provide quantitative information and assistance during ligament balancing, a device that intraoperatively measures knee joint forces and moments was developed. Its performance and surgical advantages were evaluated on six cadaver specimens mounted on a knee joint loading apparatus allowing unconstrained knee motion as well as compression and varus-valgus loading. Four different experiments were performed on each specimen. (1) Knee joints were axially loaded. Comparison between applied and measured compressive forces demonstrated the accuracy and reliability of in situ measurements (1.8N). (2) Assessment of knee stability based on condyle contact forces or varus-valgus moments were compared to the current surgical method (difference of varus-valgus loads causing condyle lift-off). The force-based approach was equivalent to the surgical method while the moment-based, which is considered optimal, showed a tendency of lateral imbalance. (3) To estimate the importance of keeping the patella in its anatomical position during imbalance assessment, the effect of patellar eversion on the mediolateral distribution of tibiofemoral contact forces was measured. One fourth of the contact force induced by the patellar load was shifted to the lateral compartment. (4) The effect of minor and major medial collateral ligament releases was biomechanically quantified. On average, the medial contact force was reduced by 20% and 46%, respectively. Large variation among specimens reflected the difficulty of ligament release and the need for intraoperative force monitoring. This series of experiments thus demonstrated the device's potential to improve ligament balancing and survivorship of total knee arthroplasty.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Less invasive methods of performing total hip arthroplasty have been considered controversial after increased complication rates and component malpositioning were reported. A new method of performing total hip arthroplasty through an incision in the superior capsule, posterior to the abductors and anterior to the posterior capsule, was developed with the aim of producing a technique that maintained the joint stability of the transgluteal exposure and the rapid abductor recovery of the posterior exposure. We assessed the recovery and complications of this technique performed with surgical navigation. The study group was compared with similar subjects who had conventional total hip arthroplasty, without surgical navigation, using the transgluteal exposure. There were 185 consecutive total hip arthroplasties in the study group and 189 nonconsecutive historical total hip arthroplasties in the control group. The two groups were controlled for complexity and had no differences in body mass index, gender, diagnosis, operative side, bilateral operations, and previous surgeries. Patients were evaluated for clinical recovery and perioperative complications at 9 and 24 weeks. The study group recovered faster at both followup examinations. The study group had fewer perioperative and postoperative complications compared with the control group. Accuracy of component positioning was not compromised compared to the control group. Less invasive surgery with the philosophy of maximally preserving the abductors, posterior capsule, and short rotators may result in a safer operation with faster recovery than traditional techniques.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The rotator cuff is a complex musculotendinous unit, which plays a major role in glenohumeral joint stability and mobilization. Tears of the rotator cuff tendon and its subsequent changes of the rotator cuff muscle are common, and the incidence increases with age. Several structures such as the muscle, tendon, and bone may contribute to the development of a tear as well as on the outcome following a rotator cuff repair. Knowledge of these structures may help to improve rotator cuff healing after rotator cuff tear. The goal of this chapter is to discuss the evidence which exists with regard to the pathophysiological changes in the muscle, tendon, and bone that lead to a rotator cuff rupture as well as the changes that occur in these structures after a tear has occurred.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: This study investigates by means of a new bone-prosthesis interface motion detector whether conceptual design differences of femoral stems are reflected in their primary stability pattern. DESIGN: An in vitro experiment using a biaxial materials testing machine in combination with three-dimensional motion measurement devices was performed. BACKGROUND: Primary stability of uncemented total hip replacements is considered to be a prerequisite for the quality of bony ongrowth to the femoral stem. Dynamic motion as a response to loading as well as total motion of the prosthesis have to be considered under quasi-physiological cyclic loading conditions. METHODS: Seven paired fresh cadaveric femora were used for the testing of two types of uncemented femoral stems with different anchoring concepts: CLS stem (Spotorno) and Cone Prosthesis (Wagner). Under sinusoidal cyclic loading mimicking in vivo hip joint forces a new measurement technique was applied allowing for the analysis of the three-dimensional interface motion. RESULTS: Considerable differences between the two prostheses could be detected both in their dynamic motion and total motion behaviour. Whereas the CLS stem, due to the wedge-shaped concept, provides smaller total motions, the longitudinal ribs of the Cone prostheses result in a substantially smaller dynamic motion. CONCLUSIONS: The measuring technique provided reliable and accurate data illustrating the three-dimensional interface motion of uncemented femoral stems.