9 resultados para Joint Angle

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE: To determine the association between the 3-dimensional (3-D) motion pattern of the caudal lumbar and lumbosacral portions of the canine vertebral column and the morphology of vertebrae, facet joints, and intervertebral disks. SAMPLE POPULATION: Vertebral columns of 9 German Shepherd Dogs and 16 dogs of other breeds with similar body weights and body conditions. PROCEDURE: Different morphometric parameters of the vertebral column were assessed by computed tomography (CT) and magnetic resonance imaging. Anatomic conformation and the 3-D motion pattern were compared, and correlation coefficients were calculated. RESULTS: Total range of motion for flexion and extension was mainly associated with the facet joint angle, the facet joint angle difference between levels of the vertebral column in the transverse plane on CT images, disk height, and lever arm length. CONCLUSIONS AND CLINICAL RELEVANCE: Motion is a complex process that is influenced by the entire 3-D conformation of the lumbar portion of the vertebral column. In vivo dynamic measurements of the 3-D motion pattern of the lumbar and lumbosacral portions of the vertebral column will be necessary to further assess biomechanics that could lead to disk degeneration in dogs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND The critical shoulder angle combines the acromion index and glenoid inclination and has potential to discriminate between shoulders at risk for rotator cuff tear or osteoarthritis and those that are asymptomatic. However, its biomechanics, and particularly the role of the glenoid inclination, are not yet fully understood. METHODS A shoulder simulator was used to analyze the independent influence of glenoid inclination during abduction from 0 to 60°. Spindle motors transferred tension forces by a cable-pulley on human cadaveric humeri. A six-degree-of-freedom force transducer was mounted directly behind the polyethylene glenoid to measure shear and compressive joint reaction force and calculate the instability ratio (ratio of shear and compressive joint reaction force) with the different force ratios of the deltoid and supraspinatus muscles (2:1 and 1:1). A stepwise change in the inclination by 5° increments allowed simulation of a critical shoulder angle range of 20° to 45°. FINDINGS Tilting the glenoid to cranial (increasing the critical shoulder angle) increases the shear joint reaction force and therefore the instability ratio. A balanced force ratio (1:1) between the deltoid and the supraspinatus allowed larger critical shoulder angles before cranial subluxation occurred than did the deltoid-dominant ratio (2:1). INTERPRETATION Glenoid inclination-dependent changes of the critical shoulder angle have a significant impact on superior glenohumeral joint stability. The increased compensatory activity of the rotator cuff to keep the humeral head centered may lead to mechanical overload and could explain the clinically observed association between large angles and degenerative rotator cuff tears.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: A previous study of radiofrequency neurotomy of the articular branches of the obturator nerve for hip joint pain produced modest results. Based on an anatomical and radiological study, we sought to define a potentially more effective radiofrequency method. DESIGN: Ten cadavers were studied, four of them bilaterally. The obturator nerve and its articular branches were marked by wires. Their radiological relationship to the bone structures on fluoroscopy was imaged and analyzed. A magnetic resonance imaging (MRI) study was undertaken on 20 patients to determine the structures that would be encountered by the radiofrequency electrode during different possible percutaneous approaches. RESULTS: The articular branches of the obturator nerve vary in location over a wide area. The previously described method of denervating the hip joint did not take this variation into account. Moreover, it approached the nerves perpendicularly. Because optimal coagulation requires electrodes to lie parallel to the nerves, a perpendicular approach probably produced only a minimal lesion. In addition, MRI demonstrated that a perpendicular approach is likely to puncture femoral vessels. Vessel puncture can be avoided if an oblique pass is used. Such an approach minimizes the angle between the target nerves and the electrode, and increases the likelihood of the nerve being captured by the lesion made. Multiple lesions need to be made in order to accommodate the variability in location of the articular nerves. CONCLUSIONS: The method that we described has the potential to produce complete and reliable nerve coagulation. Moreover, it minimizes the risk of penetrating the great vessels. The efficacy of this approach should be tested in clinical trials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Femoroacetabular impingement is considered a cause of hip osteoarthrosis. In cam impingement, an aspherical head-neck junction is squeezed into the joint and causes acetabular cartilage damage. The anterior offset angle alpha, observed on a lateral crosstable radiograph, reflects the location where the femoral head becomes aspheric. Previous studies reported a mean angle alpha of 42 degrees in asymptomatic patients. Currently, it is believed an angle alpha of 50 degrees to 55 degrees is normal. The aim of this study was to identify that angle alpha which allows impingement-free motion. In 45 patients who underwent surgical treatment for femoroacetabular impingement, we measured the angle alpha preoperatively, immediately postoperatively, and 1 year postoperatively. All hips underwent femoral correction and, if necessary, acetabular correction. The correction was considered sufficient when, in 90 degrees hip flexion, an internal rotation of 20 degrees to 25 degrees was possible. The angle alpha was corrected from a preoperative mean of 66 degrees (range, 45 degrees - 79 degrees) to 43 degrees (range, 34 degrees - 60 degrees) postoperatively. Because the acetabulum is corrected to normal first, the femoral correction is tested against a normal acetabulum. We therefore concluded an angle alpha of 43 degrees achieved surgically and with impingement-free motion, represents the normal angle alpha, an angle lower than that currently considered sufficient.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study defines the feasibility of utilizing three-dimensional (3D) gradient-echo (GRE) MRI at 1.5T for T(2)* mapping to assess hip joint cartilage degenerative changes using standard morphological MR grading while comparing it to delayed gadolinium-enhanced MRI of cartilage (dGEMRIC). MRI was obtained from 10 asymptomatic young adult volunteers and 33 patients with symptomatic femoroacetabular impingement (FAI). The protocol included T(2)* mapping without gadolinium-enhancement utilizing a 3D-GRE sequence with six echoes, and after gadolinium injection, routine hip sequences, and a dual-flip-angle 3D-GRE sequence for dGEMRIC T(1) mapping. Cartilage was classified as normal, with mild changes, or with severe degenerative changes based on morphological MRI. T(1) and T(2)* findings were subsequently correlated. There were significant differences between volunteers and patients in normally-rated cartilage only for T(1) values. Both T(1) and T(2)* values decreased significantly with the various grades of cartilage damage. There was a statistically significant correlation between standard MRI and T(2)* (T(1)) (P < 0.05). High intraclass correlation was noted for both T(1) and T(2)*. Correlation factor was 0.860 to 0.954 (T(2)*-T(1) intraobserver) and 0.826 to 0.867 (T(2)*-T(1) interobserver). It is feasible to gather further information about cartilage status within the hip joint using GRE T(2)* mapping at 1.5T.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soft tissue damage has been observed in hip joints with pathological geometries. Our primary goal was to study the relationship between morphological variations of the bony components of the hip and resultant stresses within the soft tissues of the joint during routine daily activities. The secondary goal was to find the range of morphological parameters in which stresses are minimized. Computational models of normal and pathological joints were developed based on variations of morphological parameters of the femoral head (Alpha angle) and acetabulum (CE angle). The Alpha angle was varied between 40 degrees (normal joint) and 80 degrees (cam joint). The CE angle was varied between 0 degrees (dysplastic joint) and 40 degrees (pincer joint). Dynamic loads and motions for walking and standing to sitting were applied to all joint configurations. Contact pressures and stresses were calculated and crosscompared to evaluate the influence of morphology. The stresses in the soft tissues depended strongly on the head and acetabular geometry. For the dysplastic joint, walking produced high acetabular rim stresses. Conversely, for impinging joints, standing-to-sitting activities that involved extensive motion were critical, inducing excessive distortion and shearing of the tissue-bone interface. Zones with high von Mises stresses corresponded with clinically observed damage zones in the acetabular cartilage and labrum. Hip joint morphological parameters that minimized were 20 degrees

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The complexity of the equine skull makes the temporomandibular joint a difficult area to evaluate radiographically. The goal of this study was to determine the optimal angle for a complementary radiographic projection of the equine temporomandibular joint based on a computed tomography (CT) cadaver study. CT was performed on six equine cadaver heads of horses that were euthanized for other reasons than temporomandibular joint disease. After the CT examination, 3D reconstruction of the equine skull was performed to subjectively determine the angle for a complementary radiographic projection of the temporomandibular joint. The angle was measured on the left and right temporomandibular joint of each head. Based on the measurements obtained from the CT images, a radiographic projection of the temporomandibular joint in a rostra-145 degrees ventral-caudodorsal oblique (R45 degrees V-CdDO) direction was developed by placing the X-ray unit 30 degrees laterally, maintaining at the same time the R45 degrees V-CdDO angle (R45 degrees V30 degrees L-CdDLO). This radiographic projection was applied to all cadaver heads and on six live horses. In three of the live horses abnormal findings associated with the temporomandibular joint were detected. We conclude that this new radiographic projection of the temporomandibular joint provides superior visualization of the temporomandibular joint space and the articular surface of the mandibular condyle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE The critical shoulder angle (CSA) is an indicator of degenerative shoulder pathologies. CSAs above 35° are associated with degenerative rotator cuff disease, whereas values below 30° are common in osteoarthritis of the glenohumeral joint. Measurements are usually performed on radiographs; however, no data have been reported regarding the reliability of CT scan measurements between different readers or the reproducibility of measurements from radiographs to CT scans. The purpose of our study was to clarify whether CSA measurements on radiographs and CT scans of the same patients show similar values. MATERIALS AND METHODS CSA measurements of 60 shoulders (59 patients) were performed on radiographs and multiplanar reconstructions of corresponding CT scans. Inter-reader reliability and inter-method correlation were calculated. RESULTS The mean discrepancy between readers was only 0.2° (SD ±1.0°) on radiographs. CT scan measurements showed a mean discrepancy of 0.3° (SD ±1.2°). The inter-reader reliability was 0.993 for radiographs and 0.989 for CT scans. There was a very strong inter-method correlation between the CSA measured on radiographs and CT scans (Spearman's rho = 0.974). The mean differences between angles on radiographs and CT measurements were -0.05° (SD ±1.2°) and 0.1° (SD ±1.2°), respectively. CONCLUSION Measurements of the CSA on anterior-posterior radiographs and CT scans are highly correlated, and inter-modality differences are negligible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION In iliosacral screw fixation, the dimensions of solely intraosseous (secure) pathways, perpendicular to the ilio-sacral articulation (optimal) with corresponding entry (EP) and aiming points (AP) on lateral fluoroscopic projections, and the factors (demographic, anatomic) influencing these have not yet been described. METHODS In 100 CTs of normal pelvises, the height and width of the secure and optimal pathways were measured on axial and coronal views bilaterally (total measurements: n=200). Corresponding EP and AP were defined as either the location of the screw head or tip at the crossing of lateral innominate bones' cortices (EP) and sacral midlines (AP) within the centre of the pathway, respectively. EP and AP were transferred to the sagittal pelvic view using a coordinate system with the zero-point in the centre of the posterior cortex of the S1 vertebral body (x-axis parallel to upper S1 endplate). Distances are expressed in relation to the anteroposterior distance of the S1 upper endplate (in %). The influence of demographic (age, gender, side) and/or anatomic (PIA=pelvic incidence angle; TCA=transversal curvature angle, PID-Index=pelvic incidence distance-index; USW=unilateral sacral width-index) parameters on pathway dimensions and positions of EP and AP were assessed (multivariate analysis). RESULTS The width, height or both factors of the pathways were at least 7mm or more in 32% and 53% or 20%, respectively. The EP was on average 14±24% behind the centre of the posterior S1 cortex and 41±14% below it. The AP was on average 53±7% in the front of the centre of the posterior S1 cortex and 11±7% above it. PIA influenced the width, TCA, PID-Index the height of the pathways. PIA, PID-Index, and USW-Index significantly influenced EP and AP. Age, gender, and TCA significantly influenced EP. CONCLUSION Secure and optimal placement of screws of at least 7mm in diameter will be unfeasible in the majority of patients. Thoughtful preoperative planning of screw placement on CT scans is advisable to identify secure pathways with an optimal direction. For this purpose, the presented methodology of determining and transferring EPs and APs of corresponding pathways to the sagittal pelvic view using a coordinate system may be useful.