15 resultados para Joc
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Breaking synoptic-scale Rossby waves (RWB) at the tropopause level are central to the daily weather evolution in the extratropics and the subtropics. RWB leads to pronounced meridional transport of heat, moisture, momentum, and chemical constituents. RWB events are manifest as elongated and narrow structures in the tropopause-level potential vorticity (PV) field. A feature-based validation approach is used to assess the representation of Northern Hemisphere RWB in present-day climate simulations carried out with the ECHAM5-HAM climate model at three different resolutions (T42L19, T63L31, and T106L31) against the ERA-40 reanalysis data set. An objective identification algorithm extracts RWB events from the isentropic PV field and allows quantifying the frequency of occurrence of RWB. The biases in the frequency of RWB are then compared to biases in the time mean tropopause-level jet wind speeds. The ECHAM5-HAM model captures the location of the RWB frequency maxima in the Northern Hemisphere at all three resolutions. However, at coarse resolution (T42L19) the overall frequency of RWB, i.e. the frequency averaged over all seasons and the entire hemisphere, is underestimated by 28%.The higher-resolution simulations capture the overall frequency of RWB much better, with a minor difference between T63L31 and T106L31 (frequency errors of −3.5 and 6%, respectively). The number of large-size RWB events is significantly underestimated by the T42L19 experiment and well represented in the T106L31 simulation. On the local scale, however, significant differences to ERA-40 are found in the higher-resolution simulations. These differences are regionally confined and vary with the season. The most striking difference between T106L31 and ERA-40 is that ECHAM5-HAM overestimates the frequency of RWB in the subtropical Atlantic in all seasons except for spring. This bias maximum is accompanied by an equatorward extension of the subtropical westerlies.
Resumo:
We present a climate analysis of nine unique Swiss Alpine new snow series that have been newly digitized. The stations cover different altitudes (450–1860 m asl) and all time series cover more than 100 years (one from 1864 to 2009). In addition, data from 71 stations for the last 50–80 years for new snow and snow depth are analysed to get a more complete picture of the Swiss Alpine snow variability. Important snow climate indicators such as new snow sums (NSS), maximum new snow (MAXNS) and days with snowfall (DWSF) are calculated and variability and trends analysed. Series of days with snow pack (DWSP) ≥ 1 cm are reconstructed with useful quality for six stations using the daily new snow, local temperature and precipitation data. Our results reveal large decadal variability with phases of low and high values for NSS, DWSF and DWSP. For most stations NSS, DWSF and DWSP show the lowest values recorded and unprecedented negative trends in the late 1980s and 1990s. For MAXNS, however, no clear trends and smaller decadal variability are found but very large MAXNS values (>60 cm) are missing since the year 2000. The fraction of NSS and DWSP in different seasons (autumn, winter and spring) has changed only slightly over the ∼150 year record. Some decreases most likely attributable to temperature changes in the last 50 years are found for spring, especially for NSS at low stations. Both the NSS and DWSP snow indicators show a trend reversal in most recent years (since 2000), especially at low and medium altitudes. This is consistent with the recent ‘plateauing’ (i.e. slight relative decrease) of mean winter temperature in Switzerland and illustrates how important decadal variability is in understanding the trends in key snow indicators.
Resumo:
Most intense cold surges and associated frost events in southern and southeastern Brazil are characterized by a large amplitude trough over South America extending toward tropical latitudes and a ridge to the west of it over the Pacific Ocean. In this study, potential vorticity (PV) streamers serve to examine the flow condition leading to cold surges. Case studies suggest that several PV anomalies are related to cold surge episodes: (1) the potential vorticity unit (2-PVU) isoline upstream of South America becomes progressively more distorted prior and during the cold surge episode, indicating a flow situation which is conducive for Rossby wave breaking and hence a flow which strongly deviates from zonality; (2) the initial stage of a cold surge episode is characterized by a northward bulging of high-PV air to the east of the Andes, resulting in a PV streamer whose northern end reaches Uruguay and southeastern Brazil; the strong PV gradient on its western flank constitutes a flow configuration that induces and maintains the transport of sub-Antarctic air toward the subtropics; (3) a distinct negative PV anomaly, a blocking, originates over the eastern South Pacific, upstream of the South America sector. A composite analysis of 27 cold surges is performed for stratospheric PV streamer frequency on several isentropic surfaces. It reveals that equatorward wave breaking over South America and the western South Atlantic represents an important potential component of the dynamics of intense cold surges. The indications are most pronounced around the isentropic levels of 320 K and immediately before the day with largest temperature drops over subtropical Brazil.
Resumo:
The synthesis of the two fluorinated tricyclic nucleosides 6?-F-tc-T and 6?-F-tc-5MeC, as well as the corresponding building blocks for oligonucleotide assembly, was accomplished. An X-ray analysis of N4-benzoylated 6?-F-tc-5MeC reavealed a 2?-exo (north) conformation of the furanose ring, characterizing it as an RNA mimic. In contrast to observations in the bicyclo-DNA series, no short contact between the fluorine atom and the H6 of the base, reminiscent of a nonclassical F···H hydrogen bond, could be observed. Tm measurements of modified oligodeoxynucleotides with complementary RNA showed slightly sequence-dependent duplex stabilization profiles with maximum ?Tm/mod values of +4.5 °C for 6?-F-tc-5MeC and +1 °C for 6?-F-tc-T. In comparison with parent tc-modified oligonucleotides, no relevant changes in Tm were detected, attributing the fluorine substituent a neutral role in RNA affinity. A structural analysis of duplexes with DNA and RNA by CD-spectroscopy revealed a shift from B- to A-type conformation induced by the 6?-F-tc-nucleosides. This is not a specific ?fluorine effect?, as the same is also observed for the parent tc-modifications. The two fluorinated tc-nucleosides were also incorporated into a pure tricyclo-DNA backbone and showed no discrimination in Tm with complementary RNA, demonstrating that 6?-F substitution is also compatible within fully modified tc-oligonucleotides.
Resumo:
This work presents a characterization of the surface wind climatology over the Iberian Peninsula (IP). For this objective, an unprecedented observational database has been developed. The database covers a period of 6years (2002–2007) and consists of hourly wind speed and wind direction data recorded at 514 automatic weather stations. Theoriginal observations underwent a quality control process to remove rough errors from the data set. In the first step, the annual and seasonal mean behaviour of the wind field are presented. This analysis shows the high spatial variability of the wind as a result of its interaction with the main orographic features of the IP. In order to simplify the characterization of the wind, a clustering procedure was applied to group the observational sites with similar temporal wind variability. A total of 20 regions are identified. These regions are strongly related to the main landforms of the IP. The wind behaviour of each region, characterized by the wind rose (WR), annual cycle (AC) and wind speed histogram, is explained as the response of each region to the main circulation types (CTs) affecting the IP. Results indicate that the seasonal variability of the synoptic scale is related with intra-annual variability and modulated by local features in the WRs variability. The wind speed distribution not always fit to a unimodal Weibull distribution consequence of interactions at different atmospheric scales. This work contributes to a deeper understanding of the temporal and spatial variability of surface winds. Taken together, the wind database created, the methodology used and the conclusion extracted are a benchmark for future works based on the wind behaviour.
Resumo:
The European Mediterranean region is governed by a characteristic climate of summer drought that is likely to increase in duration and intensity under predicted climate change. However, large-scale network analyses investigating spatial aspects of pre-instrumental drought variability for this biogeographic zone are still scarce. In this study we introduce 54 mid- to high-elevation tree-ring width (TRW) chronologies comprising 2186 individual series from pine trees (Pinus spp.). This compilation spans a 4000-km east–west transect from Spain to Turkey, and was subjected to quality control and standardization prior to the development of site chronologies. A principal component analysis (PCA) was applied to identify spatial growth patterns during the network's common period 1862–1976, and new composite TRW chronologies were developed and investigated. The PCA reveals a common variance of 19.7% over the 54 Mediterranean pine chronologies. More interestingly, a dipole pattern in growth variability is found between the western (15% explained variance) and eastern (9.6%) sites, persisting back to 1330 AD. Pine growth on the Iberian Peninsula and Italy favours warm early growing seasons, but summer drought is most critical for ring width formation in the eastern Mediterranean region. Synoptic climate dynamics that have been in operation for the last seven centuries have been identified as the driving mechanism of a distinct east–west dipole in the growth variability of Mediterranean pines.
Resumo:
The use of hindcast climatic data is quite extended for multiple applications. However, this approach needs the support of a validation process to allow its drawbacks and, therefore, confidence levels to be assessed. In this work, the strategy relies on an hourly wind database resulting from a dynamical downscaling experiment, with a spatial resolution of 10 km, covering the Iberian Peninsula (IP), driven by the ERA40 reanalysis (1959–2001) extended by European Centre for Medium-Range Weather Forecast (ECMWF) analysis (2002–2007) and comprising two main steps. Initially, the skill of the simulation is evaluated comparing the quality-tested observational database (Lorente-Plazas et al., 2014) at local and regional scales. The results show that the model is able to portray the main features of the wind over the IP: annual cycles, wind roses, spatial and temporal variability, as well as the response to different circulation types. In addition, there is a significant added value of the simulation with respect to driving conditions, especially in regions with a complex orography. However, some problems are evident, the major drawback being the systematic overestimation of the wind speed, which is mainly attributed to a missrepresentation of frictional forces. The model skill is also lower along the Mediterranean coast and for the Pyrenees. In a second phase, the high spatio-temporal resolution of the pseudo-real wind database is used to explore the limitations of the observational database. It is shown that missing values do not affect the characterisation of the wind climate over the IP, while the length of the observational period (6 years) is sufficient for most regions, with only a few exceptions. The spatial distribution of the observational sampling schemes should be enhanced to improve the correct assessment of all IP wind regimes, particularly in some mountainous areas.
Resumo:
Land and water management in semi-arid regions requires detailed information on precipitation distribution, including extremes, and changes therein. Such information is often lacking. This paper describes statistics of mean and extreme precipitation in a unique data set from the Mount Kenya region, encompassing around 50 stations with at least 30 years of data. We describe the data set, including quality control procedures and statistical break detection. Trends in mean precipitation and extreme indices calculated from these data for individual rainy seasons are compared with corresponding trends in reanalysis products. From 1979 to 2011, mean precipitation decreased at 75% of the stations during the ‘long rains’ (March to May) and increased at 70% of the stations during the ‘short rains’ (October to December). Corresponding trends are found in the number of heavy precipitation days, and maximum of consecutive 5-day precipitation. Conversely, an increase in consecutive dry days within both main rainy seasons is found. However, trends are only statistically significant in very few cases. Reanalysis data sets agree with observations with respect to interannual variability, while correlations are considerably lower for monthly deviations (ratios) from the mean annual cycle. While some products well reproduce the rainfall climatology and some the spatial trend pattern, no product reproduces both.