19 resultados para James, William, 1842-1910.

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main goal of the AEgIS experiment at CERN is to test the weak equivalence principle for antimatter. AEgIS will measure the free-fall of an antihydrogen beam traversing a moir'e deflectometer. The goal is to determine the gravitational acceleration with an initial relative accuracy of 1% by using an emulsion detector combined with a silicon μ-strip detector to measure the time of flight. Nuclear emulsions can measure the annihilation vertex of antihydrogen atoms with a precision of ~ 1–2 μm r.m.s. We present here results for emulsion detectors operated in vacuum using low energy antiprotons from the CERN antiproton decelerator. We compare with Monte Carlo simulations, and discuss the impact on the AEgIS project.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main goal of the AEgIS experiment at CERN is to test the weak equivalence principle for antimatter. We will measure the Earth ' s gravitational acceleration g with antihydrogen atoms being launched in a horizontal vacuum tube and traversing a moiré de fl ectometer. We intend to use a position sensitive device made of nuclear emulsions (combined with a time-of- fl ight detector such as silicon μ strips) to measure precisely their annihilation points at the end of the tube. The goal is to determine g with a 1% relative accuracy. In 2012 we tested emulsion fi lms in vacuum and at room temperature with low energy antiprotons from the CERN antiproton decelerator. First results on the expected performance for AEgIS are presented

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose to build and operate a detector based on the emulsion film technology for the measurement of the gravitational acceleration on antimatter, to be performed by the AEgIS experiment (AD6) at CERN. The goal of AEgIS is to test the weak equivalence principle with a precision of 1% on the gravitational acceleration g by measuring the vertical position of the annihilation vertex of antihydrogen atoms after their free fall while moving horizontally in a vacuum pipe. With the emulsion technology developed at the University of Bern we propose to improve the performance of AEgIS by exploiting the superior position resolution of emulsion films over other particle detectors. The idea is to use a new type of emulsion films, especially developed for applications in vacuum, to yield a spatial resolution of the order of one micron in the measurement of the sag of the antihydrogen atoms in the gravitational field. This is an order of magnitude better than what was planned in the original AEgIS proposal.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AEgIS experiment’s main goal is to measure the local gravitational acceleration of antihydrogen¯g and thus perform a direct test of the weak equivalence principle with antimatter. In the first phase of the experiment the aim is to measure ¯g with 1% relative precision. This paper presents the antihydrogen production method and a description of some components of the experiment, which are necessary for the gravity measurement. Current status of the AE¯gIS experimental apparatus is presented and recent commissioning results with antiprotons are outlined. In conclusion we discuss the short-term goals of the AE¯gIS collaboration that will pave the way for the first gravity measurement in the near future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Antihydrogen Experiment: Gravity, Interferometry, Spectroscopy (AEgIS) experiment is conducted by an international collaboration based at CERN whose aim is to perform the first direct measurement of the gravitational acceleration of antihydrogen in the local field of the Earth, with Δg/g = 1% precision as a first achievement. The idea is to produce cold (100 mK) antihydrogen ( ¯H) through a pulsed charge exchange reaction by overlapping clouds of antiprotons, from the Antiproton Decelerator (AD) and positronium atoms inside a Penning trap. The antihydrogen has to be produced in an excited Rydberg state to be subsequently accelerated to form a beam. The deflection of the antihydrogen beam can then be measured by using a moir´e deflectometer coupled to a position sensitive detector to register the impact point of the anti-atoms through the vertex reconstruction of their annihilation products. After being approved in late 2008, AEgIS started taking data in a commissioning phase in 2012. This paper presents an outline of the experiment with a brief overview of its physics motivation and of the state-of-the-art of the g measurement on antimatter. Particular attention is given to the current status of the emulsion-based position detector needed to measure the ¯H sag in AEgIS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antihydrogen holds the promise to test, for the first time, the universality of freefall with a system composed entirely of antiparticles. The AEgIS experiment at CERN’s antiproton decelerator aims to measure the gravitational interaction between matter and antimatter by measuring the deflection of a beam of antihydrogen in the Earths gravitational field (g). The principle of the experiment is as follows: cold antihydrogen atoms are synthesized in a Penning-Malberg trap and are Stark accelerated towards a moir´e deflectometer, the classical counterpart of an atom interferometer, and annihilate on a position sensitive detector. Crucial to the success of the experiment is the spatial precision of the position sensitive detector.We propose a novel free-fall detector based on a hybrid of two technologies: emulsion detectors, which have an intrinsic spatial resolution of 50 nm but no temporal information, and a silicon strip / scintillating fiber tracker to provide timing and positional information. In 2012 we tested emulsion films in vacuum with antiprotons from CERN’s antiproton decelerator. The annihilation vertices could be observed directly on the emulsion surface using the microscope facility available at the University of Bern. The annihilation vertices were successfully reconstructed with a resolution of 1–2 μmon the impact parameter. If such a precision can be realized in the final detector, Monte Carlo simulations suggest of order 500 antihydrogen annihilations will be sufficient to determine gwith a 1 % accuracy. This paper presents current research towards the development of this technology for use in the AEgIS apparatus and prospects for the realization of the final detector.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The precise measurement of forces is one way to obtain deep insight into the fundamental interactions present in nature. In the context of neutral antimatter, the gravitational interaction is of high interest, potentially revealing new forces that violate the weak equivalence principle. Here we report on a successful extension of a tool from atom optics—the moiré deflectometer—for a measurement of the acceleration of slow antiprotons. The setup consists of two identical transmission gratings and a spatially resolving emulsion detector for antiproton annihilations. Absolute referencing of the observed antimatter pattern with a photon pattern experiencing no deflection allows the direct inference of forces present. The concept is also straightforwardly applicable to antihydrogen measurements as pursued by the AEgIS collaboration. The combination of these very different techniques from high energy and atomic physics opens a very promising route to the direct detection of the gravitational acceleration of neutral antimatter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AEgIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) is an experiment that aims to perform the first direct measurement of the gravitational acceleration g of antihydrogen in the Earth’s field. A cold antihydrogen beam will be produced by charge exchange reaction between cold antiprotons and positronium excited in Rydberg states. Rydberg positronium (with quantum number n between 20 and 30) will be produced by a two steps laser excitation. The antihydrogen beam, after being accelerated by Stark effect, will fly through the gratings of a moir´e deflectometer. The deflection of the horizontal beam due to its free fall will be measured by a position sensitive detector. It is estimated that the detection of about 103 antihydrogen atoms is required to determine the gravitational acceleration with a precision of 1%. In this report an overview of the AEgIS experiment is presented and its current status is described. Details on the production of slow positronium and its excitation with lasers are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a system designed to re-bunch positron pulses delivered by an accumulator supplied by a positron source and a Surko-trap. Positron pulses from the accumulator are magnetically guided in a 0.085 T field and are injected into a region free of magnetic fields through a μ -metal field terminator. Here positrons are temporally compressed, electrostatically guided and accelerated towards a porous silicon target for the production and emission of positronium into vacuum. Positrons are focused in a spot of less than 4 mm FWTM in bunches of ∼8 ns FWHM. Emission of positronium into the vacuum is shown by single shot positron annihilation lifetime spectroscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The AEgIS experiment at CERN aims to perform the first direct measurement of gravitational interaction between matter and antimatter by measuring the deviation of a cold antihydrogen beam in the Earth gravitational field. The design of the experiment has been recently updated to include emulsion films as position sensitive detector. The submicrometric position accuracy of emulsions leads indeed to a significant improvement of the experimental sensitivity. We present results of preliminary tests and discuss perspectives for the final measurement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The AEgIS experiment is an interdisciplinary collaboration between atomic, plasma and particle physicists, with the scientific goal of performing the first precision measurement of the Earth's gravitational acceleration on antimatter. The principle of the experiment is as follows: cold antihydrogen atoms are synthesized in a Penning-Malmberg trap and are Stark accelerated towards a moiré deflectometer, the classical counterpart of an atom interferometer, and annihilate on a position sensitive detector. Crucial to the success of the experiment is an antihydrogen detector that will be used to demonstrate the production of antihydrogen and also to measure the temperature of the anti-atoms and the creation of a beam. The operating requirements for the detector are very challenging: it must operate at close to 4 K inside a 1 T solenoid magnetic field and identify the annihilation of the antihydrogen atoms that are produced during the 1 μs period of antihydrogen production. Our solution—called the FACT detector—is based on a novel multi-layer scintillating fiber tracker with SiPM readout and off the shelf FPGA based readout system. This talk will present the design of the FACT detector and detail the operation of the detector in the context of the AEgIS experiment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of the AEgIS experiment is to measure the gravitational acceleration of antihydrogen – the simplest atom consisting entirely of antimatter – with the ultimate precision of 1%. We plan to verify the Weak Equivalence Principle (WEP), one of the fundamental laws of nature, with an antimatter beam. The experiment consists of a positron accumulator, an antiproton trap and a Stark accelerator in a solenoidal magnetic field to form and accelerate a pulsed beam of antihydrogen atoms towards a free-fall detector. The antihydrogen beam passes through a moir ́e deflectometer to measure the vertical displacement due to the gravitational force. A position and time sensitive hybrid detector registers the annihilation points of the antihydrogen atoms and their time-of-flight. The detection principle has been successfully tested with antiprotons and a miniature moir ́e deflectometer coupled to a nuclear emulsion detector.