6 resultados para Isotope geochemistry

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to determine the extent and timing of dyke formation in the Ladakh Batholith we examined about 30 mostly andesitic dykes intruding the Ladakh batholith in a ca. 50 km wide area to the west of Leh (NW India). The dykes in the east of the area trend E-NE and those in the west trend N-NW. The difference in orientation is also evident in the petrography and isotopic signatures. The eastern dykes contain corroded quartz xenocrysts and show negative ε0(Nd) and positive ε0(Sr) values, where as the western dykes do not contain quartz xenocrysts and exhibit positive ε0(Nd) and near-zero ε0(Sr) values. The variability in Sr-Nd isotopes (ε0(Nd) = 3.6 to −9.6, ε0(Sr) = 0.4 to 143) and the quartz xenocrysts can best be explained by (differing degrees of) crustal assimilation of the parent magma of the dykes. Separated minerals from five dykes were dated by 40Ar-39Ar incremental heating: amphibole ages range between 50 and 54 Ma, and one biotite dated both by Rb-Sr and by 40Ar-39Ar gave an age of 45 Ma. One dated pseudotachylyte sample attests to brittle faulting at ca. 54 Ma. The combination of structural field evidence with petrographic, isotopic and geochronological analyses demonstrates that the dykes did not form from a single, progressively differentiating magma chamber, despite having formed in the same tectonic setting around the same time, and that processes such as crustal assimilation and magma mixing/mingling also played a significant role in magma petrogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Karst aquifers are known for their wide distribution of water transfer velocities. From this observation, a multiple geochemical tracer approach seems to be particularly well suited to provide a significant assessment of groundwater flows, but the choice of adapted tracers is essential. In this study, several common tracers in karst aquifers such as physicochemical parameters, major ions, stable isotopes, and d13C to more specific tracers such as dating tracers – 14C, 3H, 3H–3He, CFC-12, SF6 and 85Kr, and 39Ar – were used, in a fractured karstic carbonated aquifer located in Burgundy (France). The information carried by each tracer and the best sampling strategy are compared on the basis of geochemical monitoring done during several recharge events and over longer time periods (months to years). This study’s results demonstrate that at the seasonal and recharge event time scale, the variability of concentrations is low for most tracers due to the broad spectrum of groundwater mixings. The tracers used traditionally for the study of karst aquifers, i.e., physicochemical parameters and major ions, efficiently describe hydrological processes such as the direct and differed recharge, but require being monitored at short time steps during recharge events to be maximized. From stable isotopes, tritium, and Cl� contents, the proportion of the fast direct recharge by the largest porosity was estimated using a binary mixing model. The use of tracers such as CFC-12, SF6, and 85Kr in karst aquifers provides additional information, notably an estimation of apparent age, but they require good preliminary knowledge of the karst system to interpret the results suitably. The CFC-12 and SF6 methods efficiently determine the apparent age of baseflow, but it is preferable to sample the groundwater during the recharge event. Furthermore, these methods are based on different assumptions such as regional enrichment in atmospheric SF6, excess air, and flow models among others. 85Kr and 39Ar concentrations can potentially provide a more direct estimation of groundwater residence time. Conversely, the 3H–3He method is inefficient in the karst aquifer for dating due to 3He degassing.