11 resultados para Irwin Weintraub
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Uterine smooth muscle specimens were collected from euthanatized mares in estrus and diestrus. Longitudinal and circular specimens were mounted in organ baths and the signals transcribed to a Grass polygraph. After equilibration time and 2 g preload, their physiologic isometric contractility was recorded for a continuous 2.0 h. Area under the curve, frequency and time occupied by contractions were studied. Differences between cycle phases, between muscle layers, and over the recorded time periods were statistically evaluated using linear mixed-effect models. In the mare, physiologic contractility of the uterus decreased significantly over time for all variables evaluated (time as covariate on a continuous scale). For area under the curve, there was a significant effect of muscle layer (longitudinal > circular). For frequency, higher values were recorded in estrus for circular smooth muscle layer, whereas higher values were seen in longitudinal smooth muscle layers during diestrus. In longitudinal layer and in diestrus, more time was occupied by contractions than in circular layer, and in estrus. This study is describing physiologic myometrial motility in the organ bath depending on cycle phase.
Resumo:
Carotid sinus baroreceptors are involved in controlling blood pressure (BP) by providing input to the cardiovascular regulatory centers of the medulla. The acute effect of temporarily placing an electrode on the carotid sinus wall to electrically activate the baroreflex was investigated. We studied 11 patients undergoing elective carotid surgery. Baseline BP was 146+30/66+/-17 mm Hg and heart rate (HR) 72+/-7 bpm (mean +/- standard deviation). An electrode was placed upon the carotid sinus and after obtaining a steady state baseline of BP and HR, an electric current was applied and increased in 1-volt increments. A voltage dependent and highly significant reduction in BP was observed which averaged 18+/-26* and 8.0+/-12 mm Hg for systolic BP and diastolic BP, respectively. Maximal reductions occurred at 4.4+/-1.2 V: 23+/-24 mm Hg*, 16+/-10 mm Hg* and 7+/-12 bpm* for systolic BP, diastolic BP and HR, respectively ( = p <.05). Thus, electrical stimulation of the carotid sinus activates the carotid baroreflex resulting in a reduction in BP and HR. This presents a proof of concept for device based baroreflex modulation in acute BP regulation and adds to the available data which provide a rationale for evaluating this system in the context of chronic BP reduction in hypertensive patients.
Resumo:
OBJECTIVES: To assess perioperative outcomes and blood pressure (BP) responses to an implantable carotid sinus baroreflex activating system being investigated for the treatment of resistant hypertension. METHODS: We report on the first seventeen patients enrolled in a multicenter study. Bilateral perivascular carotid sinus electrodes (CSL) and a pulse generator (IPG) are permanently implanted. Optimal placement of the CSL is determined by intraoperative BP responses to test activations. Acute BP responses were tested postoperatively and during the first four months of follow-up. RESULTS: Prior to implant, BP was 189.6+/-27.5/110.7+/-15.3 mmHg despite stable therapy (5.2+/-1.8 antihypertensive drugs). The mean procedure time was 202+/-43 minutes. No perioperative strokes or deaths occurred. System tests performed 1 or up to 3 days postoperatively resulted in significant (all p < or = 0.0001) mean maximum reduction, with standard deviations and 95% confidence limits for systolic BP, diastolic BP and heart rate of 28+/-22 (17, 39) mmHg, 16+/-11 (10, 22) mmHg and 8+/-4 (6, 11) BPM, respectively. Repeated testing during 3 months of therapeutic electrical activation demonstrated a durable response. CONCLUSIONS: These preliminary data suggest an acceptable safety of the procedure with a low rate of adverse events and support further clinical development of baroreflex activation as a new concept to treat resistant hypertension.
Resumo:
CONTEXT Dementia care giving can lead to increased stress, physical and psychosocial morbidity, and mortality. Anecdotal evidence suggests that hospice care provided to people with dementia and their caregivers may buffer caregivers from some of the adverse outcomes associated with family caregiving in Alzheimer's Disease (AD). OBJECTIVES This pilot study examined psychological and physical outcomes among 32 spousal caregivers of patients with AD. It was hypothesized that caregivers who utilized hospice services would demonstrate better outcomes after the death of their spouse than caregivers who did not utilize hospice. METHODS The charts of all spousal caregivers enrolled in a larger longitudinal study from 2001 to 2006 (N=120) were reviewed, and participants whose spouse had died were identified. Of these, those who received hospice care (n=10) were compared to those who did not (n=22) for various physiological and psychological measures of stress, both before and after the death of the care recipient. An Analysis of Covariance (ANCOVA), with postdeath scores as the dependent variable and pre-death scores as covariates, was used for all variables. RESULTS Significant group differences were found in postdeath depressive symptoms (HAM-D; F(1,29)=6.10, p<0.05) and anxiety symptoms (HAM-A; F(1,29)=5.71, p<0.05). Most psychological outcome variables demonstrated moderate effect sizes with a Cohen's d of>0.5 between groups. CONCLUSIONS These data suggest that hospice enrollment may ameliorate the detrimental psychological effects in caregivers who have lost a spouse with Alzheimer's Disease. Based on these pilot data, further prospective investigation is warranted.
Resumo:
A number of observations have shown that Rayleigh scattering by aerosols dominates the transmission spectrum of HD 189733b at wavelengths shortward of 1 μm. In this study, we retrieve a range of aerosol distributions consistent with transmission spectroscopy between 0.3-24 μm that were recently re-analyzed by Pont et al. To constrain the particle size and the optical depth of the aerosol layer, we investigate the degeneracies between aerosol composition, temperature, planetary radius, and molecular abundances that prevent unique solutions for transit spectroscopy. Assuming that the aerosol is composed of MgSiO3, we suggest that a vertically uniform aerosol layer over all pressures with a monodisperse particle size smaller than about 0.1 μm and an optical depth in the range 0.002-0.02 at 1 μm provides statistically meaningful solutions for the day/night terminator regions of HD 189733b. Generally, we find that a uniform aerosol layer provide adequate fits to the data if the optical depth is less than 0.1 and the particle size is smaller than 0.1 μm, irrespective of the atmospheric temperature, planetary radius, aerosol composition, and gaseous molecules. Strong constraints on the aerosol properties are provided by spectra at wavelengths shortward of 1 μm as well as longward of 8 μm, if the aerosol material has absorption features in this region. We show that these are the optimal wavelengths for quantifying the effects of aerosols, which may guide the design of future space observations. The present investigation indicates that the current data offer sufficient information to constrain some of the aerosol properties of HD189733b, but the chemistry in the terminator regions remains uncertain.
Resumo:
This is an Erratum for the article 2013 ApJ 778 97
Resumo:
Directly imaged exoplanets are unexplored laboratories for the application of the spectral and temperature retrieval method, where the chemistry and composition of their atmospheres are inferred from inverse modeling of the available data. As a pilot study, we focus on the extrasolar gas giant HR 8799b, for which more than 50 data points are available. We upgrade our non-linear optimal estimation retrieval method to include a phenomenological model of clouds that requires the cloud optical depth and monodisperse particle size to be specified. Previous studies have focused on forward models with assumed values of the exoplanetary properties; there is no consensus on the best-fit values of the radius, mass, surface gravity, and effective temperature of HR 8799b. We show that cloud-free models produce reasonable fits to the data if the atmosphere is of super-solar metallicity and non-solar elemental abundances. Intermediate cloudy models with moderate values of the cloud optical depth and micron-sized particles provide an equally reasonable fit to the data and require a lower mean molecular weight. We report our best-fit values for the radius, mass, surface gravity, and effective temperature of HR 8799b. The mean molecular weight is about 3.8, while the carbon-to-oxygen ratio is about unity due to the prevalence of carbon monoxide. Our study emphasizes the need for robust claims about the nature of an exoplanetary atmosphere to be based on analyses involving both photometry and spectroscopy and inferred from beyond a few photometric data points, such as are typically reported for hot Jupiters.
Resumo:
A dedicated mission to investigate exoplanetary atmospheres represents a major milestone in our quest to understand our place in the universe by placing our Solar System in context and by addressing the suitability of planets for the presence of life. EChO—the Exoplanet Characterisation Observatory—is a mission concept specifically geared for this purpose. EChO will provide simultaneous, multi-wavelength spectroscopic observations on a stable platform that will allow very long exposures. The use of passive cooling, few moving parts and well established technology gives a low-risk and potentially long-lived mission. EChO will build on observations by Hubble, Spitzer and ground-based telescopes, which discovered the first molecules and atoms in exoplanetary atmospheres. However, EChO’s configuration and specifications are designed to study a number of systems in a consistent manner that will eliminate the ambiguities affecting prior observations. EChO will simultaneously observe a broad enough spectral region—from the visible to the mid-infrared—to constrain from one single spectrum the temperature structure of the atmosphere, the abundances of the major carbon and oxygen bearing species, the expected photochemically-produced species and magnetospheric signatures. The spectral range and resolution are tailored to separate bands belonging to up to 30 molecules and retrieve the composition and temperature structure of planetary atmospheres. The target list for EChO includes planets ranging from Jupiter-sized with equilibrium temperatures T eq up to 2,000 K, to those of a few Earth masses, with T eq \u223c 300 K. The list will include planets with no Solar System analog, such as the recently discovered planets GJ1214b, whose density lies between that of terrestrial and gaseous planets, or the rocky-iron planet 55 Cnc e, with day-side temperature close to 3,000 K. As the number of detected exoplanets is growing rapidly each year, and the mass and radius of those detected steadily decreases, the target list will be constantly adjusted to include the most interesting systems. We have baselined a dispersive spectrograph design covering continuously the 0.4–16 μm spectral range in 6 channels (1 in the visible, 5 in the InfraRed), which allows the spectral resolution to be adapted from several tens to several hundreds, depending on the target brightness. The instrument will be mounted behind a 1.5 m class telescope, passively cooled to 50 K, with the instrument structure and optics passively cooled to \u223c45 K. EChO will be placed in a grand halo orbit around L2. This orbit, in combination with an optimised thermal shield design, provides a highly stable thermal environment and a high degree of visibility of the sky to observe repeatedly several tens of targets over the year. Both the baseline and alternative designs have been evaluated and no critical items with Technology Readiness Level (TRL) less than 4–5 have been identified. We have also undertaken a first-order cost and development plan analysis and find that EChO is easily compatible with the ESA M-class mission framework.
Resumo:
Remote sensing observations meet some limitations when used to study the bulk atmospheric composition of the giant planets of our solar system. A remarkable example of the superiority of in situ probe measurements is illustrated by the exploration of Jupiter, where key measurements such as the determination of the noble gases׳ abundances and the precise measurement of the helium mixing ratio have only been made available through in situ measurements by the Galileo probe. This paper describes the main scientific goals to be addressed by the future in situ exploration of Saturn placing the Galileo probe exploration of Jupiter in a broader context and before the future probe exploration of the more remote ice giants. In situ exploration of Saturn׳s atmosphere addresses two broad themes that are discussed throughout this paper: first, the formation history of our solar system and second, the processes at play in planetary atmospheres. In this context, we detail the reasons why measurements of Saturn׳s bulk elemental and isotopic composition would place important constraints on the volatile reservoirs in the protosolar nebula. We also show that the in situ measurement of CO (or any other disequilibrium species that is depleted by reaction with water) in Saturn׳s upper troposphere may help constraining its bulk O/H ratio. We compare predictions of Jupiter and Saturn׳s bulk compositions from different formation scenarios, and highlight the key measurements required to distinguish competing theories to shed light on giant planet formation as a common process in planetary systems with potential applications to most extrasolar systems. In situ measurements of Saturn׳s stratospheric and tropospheric dynamics, chemistry and cloud-forming processes will provide access to phenomena unreachable to remote sensing studies. Different mission architectures are envisaged, which would benefit from strong international collaborations, all based on an entry probe that would descend through Saturn׳s stratosphere and troposphere under parachute down to a minimum of 10 bar of atmospheric pressure. We finally discuss the science payload required on a Saturn probe to match the measurement requirements.
Resumo:
BACKGROUND Children born preterm or with a small size for gestational age are at increased risk for childhood asthma. OBJECTIVE We sought to assess the hypothesis that these associations are explained by reduced airway patency. METHODS We used individual participant data of 24,938 children from 24 birth cohorts to examine and meta-analyze the associations of gestational age, size for gestational age, and infant weight gain with childhood lung function and asthma (age range, 3.9-19.1 years). Second, we explored whether these lung function outcomes mediated the associations of early growth characteristics with childhood asthma. RESULTS Children born with a younger gestational age had a lower FEV1, FEV1/forced vital capacity (FVC) ratio, and forced expiratory volume after exhaling 75% of vital capacity (FEF75), whereas those born with a smaller size for gestational age at birth had a lower FEV1 but higher FEV1/FVC ratio (P < .05). Greater infant weight gain was associated with higher FEV1 but lower FEV1/FVC ratio and FEF75 in childhood (P < .05). All associations were present across the full range and independent of other early-life growth characteristics. Preterm birth, low birth weight, and greater infant weight gain were associated with an increased risk of childhood asthma (pooled odds ratio, 1.34 [95% CI, 1.15-1.57], 1.32 [95% CI, 1.07-1.62], and 1.27 [95% CI, 1.21-1.34], respectively). Mediation analyses suggested that FEV1, FEV1/FVC ratio, and FEF75 might explain 7% (95% CI, 2% to 10%) to 45% (95% CI, 15% to 81%) of the associations between early growth characteristics and asthma. CONCLUSIONS Younger gestational age, smaller size for gestational age, and greater infant weight gain were across the full ranges associated with childhood lung function. These associations explain the risk of childhood asthma to a substantial extent.