5 resultados para Iron Rod Post Office

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This review is focused on the mammalian SLC11 and SLC40 families and their roles in iron homeostasis. The SLC11 family is composed of two members, SLC11A1 and SLC11A2. SLC11A1 is expressed in the lysosomal compartment of macrophages and in the tertiary granules of neutrophils, playing a key role in innate resistance against infection by intracellular microbes. SLC11A2 is a key player in iron metabolism and is ubiquitously expressed, most notably in the proximal duodenum, immature erythroid cells, brain, placenta and kidney. Intestinal iron absorption is mediated by SLC11A2 at the apical membrane of enterocytes, followed by basolateral exit via SLC40A1. To meet the daily requirement for iron, approximately 80% of the iron comes from the breakdown of hemoglobin following macrophage phagocytosis of senescent erythrocytes (iron recycling). Both SLC11A1 and SLC11A2 play an important role in macrophage iron recycling. SLC11A2 also transports iron into the cytosol across the membrane of endocytotic vesicles of the transferrin receptor-cycle. SLC40A1 is the sole member of the SLC40 family and is involved in the only cellular iron efflux mechanism described. SLC40A1 is highly expressed in several tissues and cells that play a critical role in body iron homeostasis. The signaling pathways that regulate SLC11A2 and SLC40A1 expression at transcriptional, post-transcriptional and post-translational levels are discussed. The roles of SLC11A2 and/or SLC40A1 in iron-associated disorders such as hemochromatosis, neurodegenerative diseases, and breast cancer are also summarized.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genome-wide association studies (GWAS) have revealed genetic determinants of iron metabolism, but correlation of these with clinical phenotypes is pending. Homozygosity for HFE C282Y is the predominant genetic risk factor for hereditary hemochromatosis (HH) and may cause liver cirrhosis. However, this genotype has a low penetrance. Thus, detection of yet unknown genetic markers that identify patients at risk of developing severe liver disease is necessary for better prevention. Genetic loci associated with iron metabolism (TF, TMPRSS6, PCSK7, TFR2 and Chr2p14) in recent GWAS and liver fibrosis (PNPLA3) in recent meta-analysis were analyzed for association with either liver cirrhosis or advanced fibrosis in 148 German HFE C282Y homozygotes. Replication of associations was sought in additional 499 Austrian/Swiss and 112 HFE C282Y homozygotes from Sweden. Only variant rs236918 in the PCSK7 gene (proprotein convertase subtilisin/kexin type 7) was associated with cirrhosis or advanced fibrosis (P = 1.02 × 10(-5)) in the German cohort with genotypic odds ratios of 3.56 (95% CI 1.29-9.77) for CG heterozygotes and 5.38 (95% CI 2.39-12.10) for C allele carriers. Association between rs236918 and cirrhosis was confirmed in Austrian/Swiss HFE C282Y homozygotes (P = 0.014; ORallelic = 1.82 (95% CI 1.12-2.95) but not in Swedish patients. Post hoc combined analyses of German/Swiss/Austrian patients with available liver histology (N = 244, P = 0.00014, ORallelic = 2.84) and of males only (N = 431, P = 2.17 × 10(-5), ORallelic = 2.54) were consistent with the premier finding. Association between rs236918 and cirrhosis was not confirmed in alcoholic cirrhotics, suggesting specificity of this genetic risk factor for HH. PCSK7 variant rs236918 is a risk factor for cirrhosis in HH patients homozygous for the HFE C282Y mutation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chlorophyll (chl) breakdown during senescence is an integral part of plant development and leads to the accumulation of colorless catabolites. The loss of green pigment is due to an oxygenolytic opening of the porphyrin macrocycle of pheophorbide (pheide) a followed by a reduction to yield a fluorescent chl catabolite. This step is comprised of the interaction of two enzymes, pheide a oxygenase (PaO) and red chl catabolite reductase. PaO activity is found only during senescence, hence PaO seems to be a key regulator of chl catabolism. Whereas red chl catabolite reductase has been cloned, the nature of PaO has remained elusive. Here we report on the identification of the PaO gene of Arabidopsis thaliana (AtPaO). AtPaO is a Rieske-type iron–sulfur cluster-containing enzyme that is identical to Arabidopsis accelerated cell death 1 and homologous to lethal leaf spot 1 (LLS1) of maize. Biochemical properties of recombinant AtPaO were identical to PaO isolated from a natural source. Production of fluorescent chl catabolite-1 required ferredoxin as an electron source and both substrates, pheide a and molecular oxygen. By using a maize lls1 mutant, the in vivo function of PaO, i.e., degradation of pheide a during senescence, could be confirmed. Thus, lls1 leaves stayed green during dark incubation and accumulated pheide a that caused a light-dependent lesion mimic phenotype. Whereas proteins were degraded similarly in wild type and lls1, a chl-binding protein was selectively retained in the mutant. PaO expression correlated positively with senescence, but the enzyme appeared to be post-translationally regulated as well.