7 resultados para IoT

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wireless mobile sensor networks are enlarging the Internet of Things (IoT) portfolio with a huge number of multimedia services for smart cities. Safety and environmental monitoring multimedia applications will be part of the Smart IoT systems, which aim to reduce emergency response time, while also predicting hazardous events. In these mobile and dynamic (possible disaster) scenarios, opportunistic routing allows routing decisions in a completely distributed manner, by using a hop- by-hop route decision based on protocol-specific characteristics, and a predefined end-to-end path is not a reliable solution. This enables the transmission of video flows of a monitored area/object with Quality of Experience (QoE) support to users, headquarters or IoT platforms. However, existing approaches rely on a single metric to make the candidate selection rule, including link quality or geographic information, which causes a high packet loss rate, and reduces the video perception from the human standpoint. This article proposes a cross-layer Link quality and Geographical-aware Opportunistic routing protocol (LinGO), which is designed for video dissemination in mobile multimedia IoT environments. LinGO improves routing decisions using multiple metrics, including link quality, geographic loca- tion, and energy. The simulation results show the benefits of LinGO compared with well-known routing solutions for video transmission with QoE support in mobile scenarios.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Linking the physical world to the Internet, also known as the Internet of Things, has increased available information and services in everyday life and in the Enterprise world. In Enterprise IT an increasing number of communication is done between IT backend systems and small IoT devices, for example sensor networks or RFID readers. This introduces some challenges in terms of complexity and integration. We are working on the integration of IoT devices into Enterprise IT by leveraging SOA techniques and Semantic Web technologies. We present a SOA based integration platform for connecting WSNs and large enterprise business processes. For ensuring interoperability our platform is based on Linked Services. These are thoroughly described, machine-readable, machine-reasonable service descriptions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Internet of Things (IoT) is attracting considerable attention from the universities, industries, citizens and governments for applications, such as healthcare, environmental monitoring and smart buildings. IoT enables network connectivity between smart devices at all times, everywhere, and about everything. In this context, Wireless Sensor Networks (WSNs) play an important role in increasing the ubiquity of networks with smart devices that are low-cost and easy to deploy. However, sensor nodes are restricted in terms of energy, processing and memory. Additionally, low-power radios are very sensitive to noise, interference and multipath distortions. In this context, this article proposes a routing protocol based on Routing by Energy and Link quality (REL) for IoT applications. To increase reliability and energy-efficiency, REL selects routes on the basis of a proposed end-to-end link quality estimator mechanism, residual energy and hop count. Furthermore, REL proposes an event-driven mechanism to provide load balancing and avoid the premature energy depletion of nodes/networks. Performance evaluations were carried out using simulation and testbed experiments to show the impact and benefits of REL in small and large-scale networks. The results show that REL increases the network lifetime and services availability, as well as the quality of service of IoT applications. It also provides an even distribution of scarce network resources and reduces the packet loss rate, compared with the performance of well-known protocols.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a survey on the usage, opportunities and pitfalls of semantic technologies in the Internet of Things. The survey was conducted in the context of a semantic enterprise integration platform. In total we surveyed sixty-one individuals from industry and academia on their views and current usage of IoT technologies in general, and semantic technologies in particular. Our semantic enterprise integration platform aims for interoperability at a service level, as well as at a protocol level. Therefore, also questions regarding the use of application layer protocols, network layer protocols and management protocols were integrated into the survey. The survey suggests that there is still a lot of heterogeneity in IoT technologies, but first indications of the use of standardized protocols exist. Semantic technologies are being recognized as of potential use, mainly in the management of things and services. Nonetheless, the participants still see many obstacles which hinder the widespread use of semantic technologies: Firstly, a lack of training as traditional embedded programmers are not well aware of semantic technologies. Secondly, a lack of standardization in ontologies, which would enable interoperability and thirdly, a lack of good tooling support.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Various avours of a new research field on (socio-)physical or personal analytics have emerged, with the goal of deriving semantically-rich insights from people's low-level physical sensing combined with their (online) social interactions. In this paper, we argue for more comprehensive data sources, including environmental (e.g. weather, infrastructure) and application-specific data, to better capture the interactions between users and their context, in addition to those among users. To illustrate our proposed concept of synergistic user <-> context analytics, we first provide some example use cases. Then, we present our ongoing work towards a synergistic analytics platform: a testbed, based on mobile crowdsensing and the Internet of Things (IoT), a data model for representing the different sources of data and their connections, and a prediction engine for analyzing the data and producing insights.