10 resultados para Invariant chain (Ii)
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
A genetic deficiency of the cysteine protease cathepsin L (Ctsl) in mice results in impaired positive selection of conventional CD4+ T helper cells as a result of an incomplete processing of the MHC class II associated invariant chain or incomplete proteolytic generation of positively selecting peptide ligands. The human genome encodes, in contrast to the mouse genome, for two cathepsin L proteases, namely cathepsin L (CTSL) and cathepsin V (CTSV; alternatively cathepsin L2). In the human thymic cortex, CTSV is the predominately expressed protease as compared to CTSL or other cysteine cathepsins. In order to analyze the functions of CTSL and CTSV in the positive selection of CD4+ T cells we employed Ctsl knock-out mice crossed either with transgenic mice expressing CTSL under the control of its genuine human promoter or with transgenic mice expressing CTSV under the control of the keratin 14 (K14) promoter, which drives expression to the cortical epithelium. Both human proteases are expressed in the thymus of the transgenic mice, and independent expression of both CTSL and CTSV rescues the reduced frequency of CD4+ T cells in Ctsl-deficient mice. Moreover, the expression of the human cathepsins does not change the number of CD4+CD25+Foxp3+ regulatory T cells, but the normalization of the frequency of conventional CD4+ T cell in the transgenic mice results in a rebalancing of conventional T cells and regulatory T cells. We conclude that the functional differences of CTSL and CTSV in vivo are not mainly determined by their inherent biochemical properties, but rather by their tissue specific expression pattern.
Resumo:
Diffusely infiltrating gliomas (WHO grade II-IV) are the most common primary brain tumours in adults. These tumours are not amenable to cure by surgery alone, so suitable biomarkers for adjuvant modalities are required to guide therapeutic decision-making. Epigenetic silencing of the O(6)-methylguanine-DNA methyltransferase (MGMT) gene by promoter methylation has been associated with longer survival of patients with high-grade gliomas who receive alkylating chemotherapy; and molecular testing for the methylation status of the MGMT promoter sequence is regarded as among the most relevant of such markers. We have developed a primer extension-based assay adapted to formalin-fixed paraffin-embedded tissues that enables quantitative assessment of the methylation status of the MGMT promoter. The assay is very sensitive, highly reproducible, and provides valid test results in nearly 100% of cases. Our results indicate that oligodendrogliomas, empirically known to have a relatively favourable prognosis, are also the most homogeneous entities in terms of MGMT promoter methylation. Conversely, astrocytomas, which are more prone to spontaneous progression to higher grade malignancy, are significantly more heterogeneous. In addition, we show that the degree of promoter methylation correlates with the prevalence of loss of heterozygosity on chromosome arm 1p in the oligodendroglioma group, but not the astrocytoma group. Our results may have potentially important implications for clinical molecular diagnosis.
Resumo:
Human invariant natural killer T (NKT) cell TCRs bind to CD1d via an "invariant" Vα24-Jα18 chain (iNKTα) paired to semi-invariant Vβ11 chains (iNKTβ). Single-amino acid variations at position 93 (p93) of iNKTα, immediately upstream of the "invariant" CDR3α region, have been reported in a substantial proportion of human iNKT-cell clones (4-30%). Although p93, a serine in most human iNKT-cell TCRs, makes no contact with CD1d, it could affect CD1d binding by altering the conformation of the crucial CDR3α loop. By generating recombinant refolded iNKT-cell TCRs, we show that natural single-nucleotide variations in iNKTα, translating to serine, threonine, asparagine or isoleucine at p93, exert a powerful effect on CD1d binding, with up to 28-fold differences in affinity between these variants. This effect was observed with CD1d loaded with either the artificial α-galactosylceramide antigens KRN7000 or OCH, or the endogenous glycolipid β-galactosylceramide, and its importance for autoreactive recognition of endogenous lipids was demonstrated by the binding of variant iNKT-cell TCR tetramers to cell surface expressed CD1d. The serine-containing variant showed the strongest CD1d binding, offering an explanation for its predominance in vivo. Complementary molecular dynamics modeling studies were consistent with an impact of p93 on the conformation of the CDR3α loop.
Resumo:
The number of immunoglobulin G constant heavy chain genes (cgamma genes) varies broadly among mammalian species, reflecting structural and functional differences between expressed immunoglobulin G (IgG) isotypes and allotypes. Up to now equine IgG isotypes have been defined only at the biochemical and serological level. It is still not clear how many IgG isotypes exist in horses and whether there are any allotypes. Here, we describe the isolation and characterisation of equine cgamma genes. An equine genomic lambda phage library was screened with a human cgamma4 probe. Cross-hybridising equine cgamma sequences were cloned twice and characterised by restriction mapping with the human cgamma4 and a murine sgamma1 probe. Genomic equine DNA probes for both, cgamma genes and corresponding switch regions (sgamma), were isolated and used for a more detailed BamHI restriction analysis, comparing genomic DNA of various horses. This analysis reveals the existence of at least five, or probably six cgamma genes in the equine haploid genome. Beside the porcine system, this is the highest number of cgamma genes described for any mammalian species. Moreover, for two of these cgamma genes, BamHI restriction fragment length polymorphism became evident.
Resumo:
Human narcolepsy with cataplexy is a neurological disorder, which develops due to a deficiency in hypocretin producing neurons in the hypothalamus. There is a strong association with human leucocyte antigens HLA-DR2 and HLA-DQB1*0602. The disease typically starts in adolescence. Recent developments in narcolepsy research support the hypothesis of narcolepsy being an immune-mediated disease. Narcolepsy is associated with polymorphisms of the genes encoding T cell receptor alpha chain, tumour necrosis factor alpha and tumour necrosis factor receptor II. Moreover the rate of streptococcal infection is increased at onset of narcolepsy. The hallmarks of anti-self reactions in the tissue--namely upregulation of major histocompatibility antigens and lymphocyte infiltrates--are missing in the hypothalamus. These findings are questionable because they were obtained by analyses performed many years after onset of disease. In some patients with narcolepsy autoantibodies to Tribbles homolog 2, which is expressed by hypocretin neurons, have been detected recently. Immune-mediated destruction of hypocretin producing neurons may be mediated by microglia/macrophages that become activated either by autoantigen specific CD4(+) T cells or superantigen stimulated CD8(+) T cells, or independent of T cells by activation of DQB1*0602 signalling. Activation of microglia and macrophages may lead to the release of neurotoxic molecules such as quinolinic acid, which has been shown to cause selective destruction of hypocretin neurons in the hypothalamus.
Resumo:
We present evidence for differential roles of Rho-kinase and myosin light chain kinase (MLCK) in regulating shape, adhesion, migration, and chemotaxis of human fibrosarcoma HT1080 cells on laminin-coated surfaces. Pharmacological inhibition of Rho-kinase by Y-27632 or inhibition of MLCK by W-7 or ML-7 resulted in significant attenuation of constitutive myosin light chain phosphorylation. Rho-kinase inhibition resulted in sickle-shaped cells featuring long, thin F-actin-rich protrusions. These cells adhered more strongly to laminin and migrated faster. Inhibition of MLCK in contrast resulted in spherical cells and marked impairment of adhesion and migration. Inhibition of myosin II activation with blebbistatin resulted in a morphology similar to that induced by Y-27632 and enhanced migration and adhesion. Cells treated first with blebbistatin and then with ML-7 also rounded up, suggesting that effects of MLCK inhibition on HT1080 cell shape and motility are independent of inhibition of myosin activity.
Resumo:
BACKGROUND Defects of the mitochondrial respiratory chain complex II (succinate dehydrogenase (SDH) complex) are extremely rare. Of the four nuclear encoded proteins composing complex II, only mutations in the 70 kDa flavoprotein (SDHA) and the recently identified complex II assembly factor (SDHAF1) have been found to be causative for mitochondrial respiratory chain diseases. Mutations in the other three subunits (SDHB, SDHC, SDHD) and the second assembly factor (SDHAF2) have so far only been associated with hereditary paragangliomas and phaeochromocytomas. Recessive germline mutations in SDHB have recently been associated with complex II deficiency and leukodystrophy in one patient. METHODS AND RESULTS We present the clinical and molecular investigations of the first patient with biochemical evidence of a severe isolated complex II deficiency due to compound heterozygous SDHD gene mutations. The patient presented with early progressive encephalomyopathy due to compound heterozygous p.E69 K and p.*164Lext*3 SDHD mutations. Native polyacrylamide gel electrophoresis and western blotting demonstrated an impaired complex II assembly. Complementation of a patient cell line additionally supported the pathogenicity of the novel identified mutations in SDHD. CONCLUSIONS This report describes the first case of isolated complex II deficiency due to recessive SDHD germline mutations. We therefore recommend screening for all SDH genes in isolated complex II deficiencies. It further emphasises the importance of appropriate genetic counselling to the family with regard to SDHD mutations and their role in tumorigenesis.
Resumo:
There is an increasing demand for novel metal-based complexes with biologically relevant molecules in technology and medicine. Three new Cu(II) coordination compounds with antifungal agent isoconazole (L), namely mononuclear complexes CuCl2(L)(2) (1), and Cu(O2CMe)(2)(L)(2)center dot 2H(2)O (2) and coordination polymer Cu(pht)(L)(2)(n) (3) (where H(2)pht - o-phthalic acid) were synthesized and characterized by IR spectroscopy, thermogravimetric analysis and X-ray crystallography. X-ray analysis showed that in all complexes, the isoconazole is coordinated to Cu(II) centres by a N atom of the imidazole fragment. In complex I, the square-planar environment of Cu(II) atoms is completed by two N atoms of isoconazole and two chloride ligands, whereas the Cu(II) atoms are coordinated by two N atoms from two isoconazole ligands and two O atoms from the different carboxylate residues: acetate in 2 and phthalate in 3. The formation of an infinite chain through the bridging phthalate ligand is observed in 3. The biosynthetic ability of micromycetes Aspergillus niger CNMN FD 10 in the presence of the prepared complexes 1-3 as well as the antifungal drug isoconazole were studied. Complexes 2 and 3 accelerate the biosynthesis of enzymes (beta-glucosidase, xylanase and endoglucanase) by this fungus. Moreover, a simplified and improved method for the preparation of isoconazole nitrate was developed.
Resumo:
New coordination polymers [M(Pht)(4-MeIm)2(H2O)]n (M=Co (1), Cu (2); Pht2−=dianion of o-phthalic acid; 4-MeIm=4-methylimidazole) have been synthesized and characterized by IR spectroscopy, X-ray crystallography, thermogravimetric analysis and magnetic measurements. The crystal structures of 1 and 2 are isostructural and consist of [M(4-MeIm)2(H2O)] building units linked in infinite 1D helical chains by 1,6-bridging phthalate ions which also act as chelating ligands through two O atoms from one carboxylate group in the case of 1. In complex 1, each Co(II) atom adopts a distorted octahedral N2O4 geometry being coordinated by two N atoms from two 4-MeIm, three O atoms of two phthalate residues and one O atom of a water molecule, whereas the square-pyramidal N2O3 coordination of the Cu(II) atom in 2 includes two N atoms of N-containing ligands, two O atoms of two carboxylate groups from different Pht, and a water molecule. An additional strong O–H⋯O hydrogen bond between a carboxylate group of the phthalate ligand and a coordinated water molecule join the 1D helical chains to form a 2D network in both compounds. The thermal dependences of the magnetic susceptibilities of the polymeric helical Co(II) chain compound 1 were simulated within the temperature range 20–300 K as a single ion case, whereas for the Cu(II) compound 2, the simulations between 25 and 300 K, were made for a linear chain using the Bonner–Fisher approximation. Modelling the experimental data of compound 1 with MAGPACK resulted in: g=2.6, |D|=62 cm−1. Calculations using the Bonner–Fisher approximation gave the following result for compound 2: g=2.18, J=–0.4 cm−1.
Resumo:
This paper describes the syntheses and characterization of two new copper(II) diphosphonates: [NH3(CH2)2NH3]2[Cu2(hedp)2]·H2O (1) and [NH3CH(CH3)CH2NH3]2[Cu2(hedp)2] (2) (hedp = 1-hydroxyethylidenediphosphonate). Both compounds exhibit similar one-dimensional linear chain structures. The symmetrical {Cu2(hedp)2} dimers are connected by edge-shared {CuO5} square pyramids and form infinite chains. The Cu(II) ions are alternately bridged by O–P–O groups and O atoms. The Cu–O–Cu angles are 95.8(1) and 96.1(1)° for 1 and 2, respectively. Their magnetic properties show moderately strong antiferromagnetic interactions in both compounds.