29 resultados para Intrauterine growth restriction
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Intrauterine growth restriction (IUGR) is defined as a condition in which the fetus does not reach its genetically given growth potential, resulting in low birth weight. IUGR is an important cause of perinatal morbidity and mortality, thus contributing substantially to medically indicated preterm birth in order to prevent fetal death. We subjected umbilical cord blood serum samples either belonging to the IUGR group (n = 15) or to the control group (n = 15) to fractionation by affinity chromatography using a bead system with hydrophobic interaction capabilities. So prepared protein mixtures were analyzed by MALDI-TOF mass spectrometric profiling. The six best differentiating ion signals at m/z 8205, m/z 8766, m/z 13 945, m/z 15 129, m/z 15 308, and m/z 16 001 were collectively assigned as IUGR proteome signature. Separation confidence of our IUGR proteome signature reached a sensitivity of 0.87 and a specificity of 0.93. Assignment of ion signals in the mass spectra to specific proteins was substantiated by SDS-PAGE in conjunction with peptide mass fingerprint analysis of cord blood serum proteins. One constituent of this proteome signature, apolipoprotein C-III(0) , a derivative lacking glycosylation, has been found more abundant in the IUGR cord blood serum samples, irrespective of gestational age. Hence, we suggest apolipoprotein C-III(0) as potential key-marker of the here proposed IUGR proteome signature, as it is a very low-density lipoprotein (VLDL) and high-density lipoprotein (HDL) member and as such involved in triglyceride metabolism that itself is discussed as being of importance in IUGR pathogenesis. Our results indicate that subtle alterations in protein glycosylation need to be considered for improving our understanding of the pathomechanisms in IUGR.
Resumo:
Small for gestational age neonates (SGA) could be subdivided into two groups according to the underlying causes leading to low birth weight. Intrauterine growth restriction (IUGR) is a pathologic condition with diminished growth velocity and fetal compromised well-being, while non-growth restricted SGA neonates are constitutionally (genetically determined) small. Antenatal sonographic measurements are used to differentiate these two subgroups. Maternal metabolic changes contribute to the pathogenesis of IUGR. A disturbed lipid metabolism and cholesterol supply might affect the fetus, with consequences for fetal programming of cardiovascular diseases. We evaluated fetal serum lipids and hypothesized a more atherogenic lipoprotein profile in IUGR fetuses.
Resumo:
To evaluate the oxidative state of lipoproteins in pregnancies complicated by intrauterine growth restriction (IUGR) in comparison to preeclampsia (PE) and healthy pregnant control subjects (CN).
Resumo:
OBJECTIVES: To study the expression and the function of the 11beta-hydroxysteroid dehydrogenase enzyme 1 (11beta-HSD1) and 2 (11beta-HSD2) in placenta and the fetal membranes from pregnancies with intrauterine growth restriction (IUGR) and from controls. METHODS: Amnion, chorion, decidua and cotyledon were separated from placenta; mRNA was analyzed by TaqMan real-time technology and proteins by Western blot; enzyme activities were measured by the conversion of 3H-cortisol to 3H-cortisone and vice versa. RESULTS: Predominant mRNA expression (p < 0.001) was found for 11beta-HSD1 in chorion and for 11beta-HSD2 in decidua and cotyledon. In pregnancies with IUGR, 11beta-HSD1 was upregulated in chorion (mean DeltaCt 11beta-HSD:18S mRNA 193.5 vs. 103.0 in controls respectively, p < 0.05) and 11beta-HSD2 was downregulated in decidua (mean DeltaCt 11beta-HSD2:18S mRNA 0.18 vs. 15.88 in controls respectively, p < 0.05). 11beta-HSD1 protein levels were reduced in amnion and 11beta-HSD1 and 11beta-HSD2 oxidase activity in decidua and cotyledon were reduced from pregnancies with IUGR. CONCLUSION: Reduced synthesis or activity of 11beta-HSD1 or 2 in cases of IUGR is shown in some but not in all tissues. The local mRNA expression of 11beta-HSD1 in chorion may reflect a mechanism on the post-transcriptional gene regulation to stimulate the formation of cortisone in IUGR. To provoke increasing activity with oxidase stimulators could be a future therapy in cases of IUGR.
Resumo:
BACKGROUND Intrauterine growth restriction (IUGR) occurs in up to 10% of pregnancies and is considered as a major risk to develop various diseases in adulthood, such as cardiovascular diseases, insulin resistance, hypertension or end stage kidney disease. Several IUGR models have been developed in order to understand the biological processes linked to fetal growth retardation, most of them being rat or mouse models and nutritional models. In order to reproduce altered placental flow, surgical models have also been developed, and among them bilateral uterine ligation has been frequently used. Nevertheless, this model has never been developed in the mouse, although murine tools display multiple advantages for biological research. The aim of this work was therefore to develop a mouse model of bilateral uterine ligation as a surgical model of IUGR. RESULTS In this report, we describe the set up and experimental data obtained from three different protocols (P1, P2, P3) of bilateral uterine vessel ligation in the mouse. Ligation was either performed at the cervical end of each uterine horn (P1) or at the central part of each uterine horn (P2 and P3). Time of surgery was E16 (P1), E17 (P2) or E16.5 (P3). Mortality, maternal weight and abortion parameters were recorded, as well as placentas weights, fetal resorption, viability, fetal weight and size. Results showed that P1 in test animals led to IUGR but was also accompanied with high mortality rate of mothers (50%), low viability of fetuses (8%) and high resorption rate (25%). P2 and P3 improved most of these parameters (decreased mortality and improved pregnancy outcomes; improved fetal viability to 90% and 27%, respectively) nevertheless P2 was not associated to IUGR contrary to P3. Thus P3 experimental conditions enable IUGR with better pregnancy and fetuses outcomes parameters that allow its use in experimental studies. CONCLUSIONS Our results show that bilateral uterine artery ligation according to the protocol we have developed and validated can be used as a surgical mouse model of IUGR.
Resumo:
PURPOSE: To evaluate diffusion-weighted magnetic resonance (MR) imaging of the human placenta in fetuses with and fetuses without intrauterine growth restriction (IUGR) who were suspected of having placental insufficiency. MATERIALS AND METHODS: The study was approved by the local ethics committee, and written informed consent was obtained. The authors retrospectively evaluated 1.5-T fetal MR images from 102 singleton pregnancies (mean gestation ± standard deviation, 29 weeks ± 5; range, 21-41 weeks). Morphologic and diffusion-weighted MR imaging were performed. A region of interest analysis of the apparent diffusion coefficient (ADC) of the placenta was independently performed by two observers who were blinded to clinical data and outcome. Placental insufficiency was diagnosed if flattening of the growth curve was detected at obstetric ultrasonography (US), if the birth weight was in the 10th percentile or less, or if fetal weight estimated with US was below the 10th percentile. Abnormal findings at Doppler US of the umbilical artery and histopathologic examination of specimens from the placenta were recorded. The ADCs in fetuses with placental insufficiency were compared with those in fetuses of the same gestational age without placental insufficiency and tested for normal distribution. The t tests and Pearson correlation coefficients were used to compare these results at 5% levels of significance. RESULTS: Thirty-three of the 102 pregnancies were ultimately categorized as having an insufficient placenta. MR imaging depicted morphologic changes (eg, infarction or bleeding) in 27 fetuses. Placental dysfunction was suspected in 33 fetuses at diffusion-weighted imaging (mean ADC, 146.4 sec/mm(2) ± 10.63 for fetuses with placental insufficiency vs 177.1 sec/mm(2) ± 18.90 for fetuses without placental insufficiency; P < .01, with one false-positive case). The use of diffusion-weighted imaging in addition to US increased sensitivity for the detection of placental insufficiency from 73% to 100%, increased accuracy from 91% to 99%, and preserved specificity at 99%. CONCLUSION: Placental dysfunction associated with growth restriction is associated with restricted diffusion and reduced ADC. A decreased ADC used as an early marker of placental damage might be indicative of pregnancy complications such as IUGR.
Resumo:
Fetal echocardiography was initially used to diagnose structural heart disease, but recent interest has focused on functional assessment. Effects of extracardiac conditions on the cardiac function such as volume overload (in the recipient in twin-twin transfusion syndrome), a hyperdynamic circulation (arterio-venous malformation), cardiac compression (diaphragmatic hernia, lung tumours) and increased placental resistance (intrauterine growth restriction and placental insufficiency) can be studied by ultrasound and may guide decisions for intervention or delivery. A variety of functional tests can be used, but there is no single clinical standard. For some specific conditions, however, certain tests have shown diagnostic value.
Resumo:
Background While survival rates of extremely preterm infants have improved over the last decades, the incidence of neurodevelopmental disability (ND) in survivors remains high. Representative current data on the severity of disability and of risk factors associated with poor outcome in this growing population are necessary for clinical guidance and parent counselling. Methods Prospective longitudinal multicentre cohort study of preterm infants born in Switzerland between 240/7 and 276/7 weeks gestational age during 2000–2008. Mortality, adverse outcome (death or severe ND) at two years, and predictors for poor outcome were analysed using multilevel multivariate logistic regression. Neurodevelopment was assessed using Bayley Scales of Infant Development II. Cerebral palsy was graded after the Gross Motor Function Classification System. Results Of 1266 live born infants, 422 (33%) died. Follow-up information was available for 684 (81%) survivors: 440 (64%) showed favourable outcome, 166 (24%) moderate ND, and 78 (11%) severe ND. At birth, lower gestational age, intrauterine growth restriction and absence of antenatal corticosteroids were associated with mortality and adverse outcome (p < 0.001). At 360/7 weeks postmenstrual age, bronchopulmonary dysplasia, major brain injury and retinopathy of prematurity were the main predictors for adverse outcome (p < 0.05). Survival without moderate or severe ND increased from 27% to 39% during the observation period (p = 0.02). Conclusions In this recent Swiss national cohort study of extremely preterm infants, neonatal mortality was determined by gestational age, birth weight, and antenatal corticosteroids while neurodevelopmental outcome was determined by the major neonatal morbidities. We observed an increase of survival without moderate or severe disability.
Resumo:
INTRODUCTION The ATP-binding cassette (ABC) transporter A1 (ABCA1) and ABCG1 are highly expressed in the placenta in various compartments, including the villous syncytiotrophoblast (V-STB) and foetal endothelial cells. Among other not yet characterized functions, they play a role in the foeto-maternal transport of cholesterol and other lipophilic molecules. In humans, preliminary data suggest expressional changes of ABCA1 and ABCG1 in pathologic gestation, particularly under hypoxic conditions, but a systematic expression analysis in common human pregnancy diseases has never been performed. OBJECTIVES The aim of the present study was to characterize ABCA1 and ABCG1 expression in a large series of pathologic placentas, in particular from preeclampsia (PE) and intrauterine growth restriction (IUGR) which are associated with placental hypoxia. METHODS Placentas from 152 pathological pregnancies, including PE and/or HELLP (n=24) and IUGR (n=21), and 20 normal control placentas were assessed for their ABCA1 and ABCG1 mRNA and protein expression with quantitative RT-PCR and semi-quantitative immunohistochemical analysis, respectively. RESULTS ABCA1 protein expression in the V-STB was significantly less extensive in PE compared with normal controls (<10% of V-STB stained for ABCA1 in 58% PE placentas vs. 25% controls; p=0.035). Conversely, it was significantly more wide-spread in IUGR (>75% of V-STB stained in 57% IUGR placentas vs. 15% controls; p=0.009). Moreover, there was an insignificant trend for increased ABCA1 expression in fetal endothelial cells of stem villi in PE (p=0.0588). ABCA1 staining levels in V-STB were significantly associated with placental histopathological features related with hypoxia: they were decreased in placentas exhibiting syncytial knotting (p=0.033) and decidual vasculopathy (p=0.0437) and increased in low weight placentas (p=0.015). The significant and specific alterations in ABCA1 protein expression found at a specific cellular level were not paralleled by changes in ABCA1 mRNA abundance of total placental tissue. ABCG1 staining was universally extensive in the V-STB of normal placentas, always affecting more than 90% of V-STB surface. In comparison, ABCG1 staining of the V-STB was generally often reduced in pregnancy diseases. In particular, less than 90% of V-STB exhibited ABCG1 staining in 26% of PE placentas (p=0.022) and 35% of IUGR placentas (p=0.003). Similarly to ABCA1, ABCG1 mRNA expression in total placental tissue was not significantly different between controls and PE or IUGR. CONCLUSION ABCA1 and ABCG1 proteins are differentially expressed, with either down- or up-regulation, in the V-STB of placentas exhibiting features of chronic hypoxia, such as in PE and IUGR. This suggests that other factors in addition to hypoxia regulate the expression of placental lipid transporters. The specific changes on a cellular level were masked when only total tissue mRNA was analysed underlining the importance of cell specific expression analysis. The potential effects of decreased placental ABCA1 and ABCG1 expression on foetal nutrition and development remain to be elucidated.
Resumo:
Plasminogen activator inhibitors (PAIs) play critical roles in regulating cellular invasion and fibrinolysis. An increase in the ratio of PAI-1/PAI-2 in placenta and maternal serum is suggested to result in excessive intervillous fibrin deposition and placental infarction in pregnancies complicated by preeclampsia (PE) and intrauterine growth restriction (IUGR). In the current study we used dual (maternal and fetal) perfusion of human term placentas to examine the release of PAIs to the intervillous space. ELISA revealed a significant time-dependent increase in total PAI-1 levels in maternal perfusate (MP) between 1 and 7h of perfusion. Conversely, PAI-2 levels decreased resulting in a 3-fold increase in the PAI-1/PAI-2 ratio in MP. Levels of PAI-1, but not PAI-2, in placental tissue extracts increased during perfusion. In perfusions carried out with xanthine and xanthine oxidase (X + XO), compounds used to generate reactive oxygen species (ROS), no time-dependent increase in total PAI-1 levels was observed. In addition, X + XO treatment promoted a 3-fold reduction in active PAI-1 levels in MP, indicating that ROS decrease PAI-1 release to MP. The finding of a time-dependent change in patterns of PAI expression and response to ROS indicates the utility of dual perfusion as a model to dissect mechanism(s) promoting aberrant fibrinolysis in pregnancies complicated by PE and IUGR.
Resumo:
PURPOSE: In this study we examined the arterial-adaptive dilatation and Doppler velocimetry, especially RI values, in normal fetuses with a single umbilical artery (SUA). MATERIALS AND METHODS: We studied 195 fetuses from 18 to 39 weeks of gestational age with a prenatally identified SUA retrospectively. They were enrolled in this study if the following information applied: > 18 weeks of gestational age, no structural or chromosomal abnormalities, and histopathological confirmation of SUA. Sonographic examination included evaluation of the umbilical artery resistance and the cross-sectional area of the umbilical cord, and its vessels were measured in all cases. Small for gestational age (SGA) was diagnosed when the birth weight was below the 10th percentile for gestational age. Fetuses with intrauterine growth restriction were defined as those with biometric data below the 5th percentile. RESULTS: There were 119 cases of prenatally identified SUA which met the inclusion criteria. RI values were below the 10th percentile in 33/119 (27.33) and below the 50th percentile in 73/119 (61.33). RI values below the 10th percentile were significantly more likely to be in the normal collective than in the growth restricted collective [31/87 (35.63%) vs. 2/32 (6.25%); p = 0.001]. Even more significant differences became apparent when comparing the RI values below the 50th percentile of both groups. An umbilical artery diameter over the 90th percentile was found in 49 (41.9%) of cases and was significantly more likely to be present in normal growing fetuses than in the growth restricted group. CONCLUSION: Normal fetuses with SUA are at higher risk to be born as SGA. With our study results we can confirm the hypothesis that Doppler flow measurements and arterial diameter in SUA are different from those found in normal fetal umbilical arteries. RI values over the 50th percentile or a cross-sectional area of the artery below 95th percentile after 26th week of gestation significantly increases the risk of SGA.
Resumo:
INTRODUCTION Transplacental feto-maternal lipid exchange through the ATP-binding cassette transporters ABCA1 and ABCG1 is important for normal fetal development. However, only scarce and conflicting data exist on the involvement of these transporters in gestational disease. METHODS Placenta samples (n = 72) derived from common gestational diseases, including pre-eclampsia (PE), HELLP, intrauterine growth restriction (IUGR), intrahepatic cholestasis of pregnancy and gestational diabetes, were assessed for their ABCA1 and ABCG1 expression levels and compared to age-matched control placentas with qRT-PCR and immunohistochemistry. ABCA1 expression was additionally investigated with immunoblot in placental membrane vesicles. Furthermore, placental cholesterol and phospholipid contents were assessed. RESULTS ABCA1 mRNA levels differed significantly between preterm and term control placentas (p = 0.0013). They were down-regulated in isolated PE and PE with IUGR (p = 0.0006 and p = 0.0012, respectively), but unchanged in isolated IUGR, isolated HELLP and other gestational diseases compared to gestational age-matched controls. Correspondingly, in PE, ABCA1 protein expression was significantly reduced in the apical membrane of the villous syncytiotrophoblast (p = 0.011) and in villous fetal endothelial cells (p = 0.036). Furthermore, in PE there was a significant increase in the placental content of total and individual classes of phospholipids which were partially correlated with diminished ABCA1 expression. Conversely, ABCG1 mRNA and protein levels were stable in the investigated conditions. CONCLUSIONS In gestational disease, there is a specific down-regulation of placental ABCA1 expression at sites of feto-maternal lipid exchange in PE. At a functional level, the increase in placental lipid concentrations provides indirect evidence of an impaired transport capacity of ABCA1 in this disease.
Resumo:
INTRODUCTION Intrauterine Growth Restriction (IUGR) is a multifactorial disease defined by an inability of the fetus to reach its growth potential. IUGR not only increases the risk of neonatal mortality/morbidity, but also the risk of metabolic syndrome during adulthood. Certain placental proteins have been shown to be implicated in IUGR development, such as proteins from the GH/IGF axis and angiogenesis/apoptosis processes. METHODS Twelve patients with term IUGR pregnancy (birth weight < 10th percentile) and 12 CTRLs were included. mRNA was extracted from the fetal part of the placenta and submitted to a subtraction method (Clontech PCR-Select cDNA Subtraction). RESULTS One candidate gene identified was the long non-coding RNA NEAT1 (nuclear paraspeckle assembly transcript 1). NEAT1 is the core component of a subnuclear structure called paraspeckle. This structure is responsible for the retention of hyperedited mRNAs in the nucleus. Overall, NEAT1 mRNA expression was 4.14 (±1.16)-fold increased in IUGR vs. CTRL placentas (P = 0.009). NEAT1 was exclusively localized in the nuclei of the villous trophoblasts and was expressed in more nuclei and with greater intensity in IUGR placentas than in CTRLs. PSPC1, one of the three main proteins of the paraspeckle, co-localized with NEAT1 in the villous trophoblasts. The expression of NEAT1_2 mRNA, the long isoform of NEAT1, was only modestly increased in IUGR vs. CTRL placentas. DISCUSSION/CONCLUSION The increase in NEAT1 and its co-localization with PSPC1 suggests an increase in paraspeckles in IUGR villous trophoblasts. This could lead to an increased retention of important mRNAs in villous trophoblasts nuclei. Given that the villous trophoblasts are crucial for the barrier function of the placenta, this could in part explain placental dysfunction in idiopathic IUGR fetuses.
Resumo:
Throughout the last decade, increasing awareness has been raised on issues related to reproduction in rheumatic diseases including basic research to clarify the important role of estrogens in the etiology and pathophysiology of immune/inflammatory diseases. Sub- or infertility is a heterogeneous condition that can be related to immunological mechanisms, to pregnancy loss, to disease burden, to therapy, and to choices in regard to family size. Progress in reproductive medicine has made it possible for more patients with rheumatic disease to have children. Active disease in women with rheumatoid arthritis (RA) affects their children's birth weight and may have long-term effects on their future health status. Pregnancy complications as preeclampsia and intrauterine growth restriction are still increased in patients with systemic lupus erythematosus (SLE) and antiphospholipid syndrome (APS), however, biomarkers can monitor adverse events, and several new therapies may improve outcomes. Pregnancies in women with APS remain a challenge, and better therapies for the obstetric APS are needed. New prospective studies indicate improved outcomes for pregnancies in women with rare diseases like systemic sclerosis and vasculitis. TNF inhibitors hold promise for maintaining remission in rheumatological patients and may be continued at least in the first half of pregnancy. Pre-conceptional counseling and interdisciplinary management of pregnancies are essential for ensuring optimal pregnancy outcomes.
Resumo:
Screening, Identification and Preliminary Investigation of Target Transporters in Pregnancy Pathologies. INTRODUCTION: Pre-eclampsia (PE), intrauterine growth restriction (IUGR) and gestational diabetes mellitus (GDM) are major sources of clinical morbidity and mortality in pregnant women worldwide. The mechanisms underlying these gestational diseases are complex and not yet fully understood, but one factor contributing to their development is impaired maternal-fetal nutrient transport. Therefore, we aimed to identify candidate membrane transporters involved in transplacental nutrient transfer associated with PE/IUGR or GDM. METHODS: Using in silico strategies, we analysed various gene expression data sets generated on different platforms focusing on solute carriers, ABC transporters and TRP channels in order to identify transporters that are differently expressed between patients and gestational age-matched controls. These bioinformatic analyses were combined with literature data to define a catalogue of target transporters that could be involved in the development of PE/IUGR or GDM. Transporters of interest were then analysed for gene expression using qRT-PCR in placental tissues of patients and controls. For validating the results on protein and functional level, we started to establish an in vitro assay using freshly isolated primary cytotrophoblast cells polarized on the Transwell® system. RESULTS: Using bioinformatics approaches, we initially identified 37 target membrane proteins which were mainly associated with the transport of amino acids, vitamins, and trace elements. At the current state of analysis, the amino acid transporters SLC7A7, SLC38A2, SLC38A5, and the thiamine transporter SLC19A3 showed significant differences in placental mRNA expression between controls and patients affected by PE and/or IUGR. Subsequent gene expression analysis in our in-house GDM placental tissue bank is still ongoing. CONCLUSIONS: Based on our in silico analyses, literature data and first follow-up in vitro validations, we were able to define potentially interesting candidate transporters implicated in PE/IUGR or GDM. To date, additional newly defined candidate targets are being analysed on mRNA level in PE/IUGR and GDM. Subsequent analyses on protein and functional level will reveal whether these targets could be of diagnostic or therapeutical interest in these pregnancy pathologies.