51 resultados para Intraclass struggles
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
PURPOSE: To determine the reproducibility and validity of video screen measurement (VSM) of sagittal plane joint angles during gait. METHODS: 17 children with spastic cerebral palsy walked on a 10m walkway. Videos were recorded and 3d-instrumented gait analysis was performed. Two investigators measured six sagittal joint/segment angles (shank, ankle, knee, hip, pelvis, and trunk) using a custom-made software package. The intra- and interrater reproducibility were expressed by the intraclass correlation coefficient (ICC), standard error of measurements (SEM) and smallest detectable difference (SDD). The agreement between VSM and 3d joint angles was illustrated by Bland-Altman plots and limits of agreement (LoA). RESULTS: Regarding the intrarater reproducibility of VSM, the ICC ranged from 0.99 (shank) to 0.58 (trunk), the SEM from 0.81 degrees (shank) to 5.97 degrees (trunk) and the SDD from 1.80 degrees (shank) to 16.55 degrees (trunk). Regarding the interrater reproducibility, the ICC ranged from 0.99 (shank) to 0.48 (trunk), the SEM from 0.70 degrees (shank) to 6.78 degrees (trunk) and the SDD from 1.95 degrees (shank) to 18.8 degrees (trunk). The LoA between VSM and 3d data ranged from 0.4+/-13.4 degrees (knee extension stance) to 12.0+/-14.6 degrees (ankle dorsiflexion swing). CONCLUSION: When performed by the same observer, VSM mostly allows the detection of relevant changes after an intervention. However, VSM angles differ from 3d-IGA and do not reflect the real sagittal joint position, probably due to the additional movements in the other planes.
Resumo:
Background Existing lower-limb, region-specific, patient-reported outcome measures have clinimetric limitations, including limitations in psychometric characteristics (eg, lack of internal consistency, lack of responsiveness, measurement error) and the lack of reported practical and general characteristics. A new patient-reported outcome measure, the Lower Limb Functional Index (LLFI), was developed to address these limitations. Objective The purpose of this study was to overcome recognized deficiencies in existing lower-limb, region-specific, patient-reported outcome measures through: (1) development of a new lower-extremity outcome scale (ie, the LLFI) and (2) evaluation of the clinimetric properties of the LLFI using the Lower Extremity Functional Scale (LEFS) as a criterion measure. Design This was a prospective observational study. Methods The LLFI was developed in a 3-stage process of: (1) item generation, (2) item reduction with an expert panel, and (3) pilot field testing (n=18) for reliability, responsiveness, and sample size requirements for a larger study. The main study used a convenience sample (n=127) from 10 physical therapy clinics. Participants completed the LLFI and LEFS every 2 weeks for 6 weeks and then every 4 weeks until discharge. Data were used to assess the psychometric, practical, and general characteristics of the LLFI and the LEFS. The characteristics also were evaluated for overall performance using the Measurement of Outcome Measures and Bot clinimetric assessment scales. Results The LLFI and LEFS demonstrated a single-factor structure, comparable reliability (intraclass correlation coefficient [2,1]=.97), scale width, and high criterion validity (Pearson r=.88, with 95% confidence interval [CI]). Clinimetric performance was higher for the LLFI compared with the LEFS on the Measurement of Outcome Measures scale (96% and 95%, respectively) and the Bot scale (100% and 83%, respectively). The LLFI, compared with the LEFS, had improved responsiveness (standardized response mean=1.75 and 1.64, respectively), minimal detectable change with 90% CI (6.6% and 8.1%, respectively), and internal consistency (α=.91 and .95, respectively), as well as readability with reduced user error and completion and scoring times. Limitations Limitations of the study were that only participants recruited from outpatient physical therapy clinics were included and that no specific conditions or diagnostic subgroups were investigated. Conclusion The LLFI demonstrated sound clinimetric properties. There was lower response error, efficient completion and scoring, and improved responsiveness and overall performance compared with the LEFS. The LLFI is suitable for assessment of lower-limb function.
Resumo:
Tumor budding is recognized by the World Health Organization as an additional prognostic factor in colorectal cancer but remains unreported in diagnostic work due to the absence of a standardized scoring method. This study aims to assess the most prognostic and reproducible scoring systems for tumor budding in colorectal cancer. Tumor budding on pancytokeratin-stained whole tissue sections from 105 well-characterized stage II patients was scored by 3 observers using 7 methods: Hase, Nakamura, Ueno, Wang (conventional and rapid method), densest high-power field, and 10 densest high-power fields. The predictive value for clinicopathologic features, the prognostic significance, and interobserver variability of each scoring method was analyzed. Pancytokeratin staining allowed accurate evaluation of tumor buds. Interobserver agreement for 3 observers was excellent for densest high-power field (intraclass correlation coefficient, 0.83) and 10 densest high-power fields (intraclass correlation coefficient, 0.91). Agreement was moderate to substantial for the conventional Wang method (κ = 0.46-0.62) and moderate for the rapid method (κ = 0.46-0.58). For Nakamura, moderate agreement (κ = 0.41-0.52) was reached, whereas concordance was fair to moderate for Ueno (κ = 0.39-0.56) and Hase (κ = 0.29-0.51). The Hase, Ueno, densest high-power field, and 10 densest high-power field methods identified a significant association of tumor budding with tumor border configuration. In multivariate analysis, only tumor budding as evaluated in densest high-power field and 10 densest high-power fields had significant prognostic effects on patient survival (P < .01), with high prognostic accuracy over the full 10-year follow-up. Scoring tumor buds in 10 densest high-power fields is a promising method to identify stage II patients at high risk for recurrence in daily diagnostics; it is highly reproducible, accounts for heterogeneity, and has a strong predictive value for adverse outcome.
Resumo:
Although tumor budding is linked to adverse prognosis in colorectal cancer, it remains largely unreported in daily diagnostic work due to the absence of a standardized scoring method. Our aim was to assess the inter-observer agreement of a novel 10-high-power-fields method for assessment of tumor budding at the invasive front and to confirm the prognostic value of tumor budding in our setting of colorectal cancers. Whole tissue sections of 215 colorectal cancers with full clinico-pathological and follow-up information were stained with cytokeratin AE1/AE3 antibody. Presence of buds was scored across 10-high-power fields at the invasive front by two pathologists and two additional observers were asked to score 50 cases of tumor budding randomly selected from the larger cohort. The measurements were correlated to the patient and tumor characteristics. Inter-observer agreement and correlation between observers' scores were excellent (P<0.0001; intraclass correlation coefficient=0.96). A test subgroup of 65 patients (30%) was used to define a valid cutoff score for high-grade tumor budding and the remaining 70% of the patients were entered into the analysis. High-grade budding was defined as an average of ≥10 buds across 10-high-power fields. High-grade budding was associated with a higher tumor grade (P<0.0001), higher TNM stage (P=0.0003), vascular invasion (P<0.0001), infiltrating tumor border configuration (P<0.0001) and reduced survival (P<0.0001). Multivariate analysis confirmed its independent prognostic effect (P=0.007) when adjusting for TNM stage and adjuvant therapy. Using 10-high-power fields for evaluating tumor budding has independent prognostic value and shows excellent inter-observer agreement. Like the BRE and Gleason scores in breast and prostate cancers, respectively, tumor budding could be a basis for a prognostic score in colorectal cancer.
Resumo:
OBJECTIVES: To test whether dynamic contour tonometry yields ocular pulse amplitude (OPA) measurements that are independent of corneal thickness and curvature, and to assess variables of observer agreement. METHODS: In a multivariate cluster analysis on 223 eyes, the relationship between central corneal thickness, corneal curvature, axial length, anterior chamber depth, intraocular pressure, sex, age, and OPA measurements was assessed. Intraobserver and interobserver variabilities were calculated from repeated measurements obtained from 8 volunteers by 4 observers. RESULTS: The OPA readings were not affected by central corneal thickness (P = .08), corneal curvature (P = .47), anterior chamber depth (P = .80), age (P = .60), or sex (P = .73). There was a positive correlation between OPA and intraocular pressure (0.12 mm Hg/1 mm Hg of intraocular pressure; P<.001) and a negative correlation between OPA and axial length (0.27 mm Hg/1 mm of length; P<.001). Intraobserver and interobserver variabilities were 0.08 and 0.02 mm Hg, respectively, and the intraclass correlation coefficient was 0.89. CONCLUSIONS: The OPA readings obtained with dynamic contour tonometry in healthy subjects are not influenced by the structure of the anterior segment of the eye but are affected by intraocular pressure and axial length. We found a high amount of agreement within and between observers.
Resumo:
A CT-based method ("HipMotion") for the noninvasive three-dimensional assessment of femoroacetabular impingement (FAI) was developed, validated, and applied in a clinical pilot study. The method allows for the anatomically based calculation of hip range of motion (ROM), the exact location of the impingement zone, and the simulation of quantified surgical maneuvers for FAI. The accuracy of HipMotion was 0.7 +/- 3.1 degrees in a plastic bone setup and -5.0 +/- 5.6 degrees in a cadaver setup. Reliability and reproducibility were excellent [intraclass correlation coefficient (ICC) > 0.87] for all measures except external rotation (ICC = 0.48). The normal ROM was determined from a cohort of 150 patients and was compared to 31 consecutive hips with FAI. Patients with FAI had a significantly decreased flexion, internal rotation, and abduction in comparison to normal hips (p < 0.001). Normal hip flexion and internal rotation are generally overestimated in a number of orthopedic textbooks. HipMotion is a useful tool for further assessment of impinging hips and for appropriate planning of the necessary amount of surgical intervention, which represents the basis for future computer-assisted treatment of FAI with less invasive surgical approaches, such as hip arthroscopy.
Resumo:
PURPOSE: Two noninvasive methods to measure dental implant stability are damping capacity assessment (Periotest) and resonance frequency analysis (Osstell). The objective of the present study was to assess the correlation of these 2 techniques in clinical use. MATERIALS AND METHODS: Implant stability of 213 clinically stable loaded and unloaded 1-stage implants in 65 patients was measured in triplicate by means of resonance frequency analysis and Periotest. Descriptive statistics as well as Pearson's, Spearman's, and intraclass correlation coefficients were calculated with SPSS 11.0.2. RESULTS: The mean values were 57.66 +/- 8.19 implant stability quotient for the resonance frequency analysis and -5.08 +/- 2.02 for the Periotest. The correlation of both measuring techniques was -0.64 (Pearson) and -0.65 (Spearman). The single-measure intraclass correlation coefficients for the ISQ and Periotest values were 0.99 and 0.88, respectively (95% CI). No significant correlation of implant length with either resonance frequency analysis or Periotest could be found. However, a significant correlation of implant diameter with both techniques was found (P < .005). The correlation of both measuring systems is moderate to good. It seems that the Periotest is more susceptible to clinical measurement variables than the Osstell device. The intraclass correlation indicated lower measurement precision for the Periotest technique. Additionally, the Periotest values differed more from the normal (Gaussian) curve of distribution than the ISQs. Both measurement techniques show a significant correlation to the implant diameter. CONCLUSION: Resonance frequency analysis appeared to be the more precise technique.
Resumo:
The aim of this in vitro study was to evaluate the influence of pit and fissure sealants on fluorescence readings using lasers. We selected 166 permanent molars and randomly divided them into 4 groups which were each treated with a different sealant (a commercially available clear sealant, 2 opaque sealants and an experimental nanofilled clear sealant). The teeth were independently measured twice by 2 experienced dentists using conventional laser fluorescence (LF) and a laser fluorescence pen device (LFpen), before and after sealing, and again after thermocycling to simulate the thermal stressing between the tooth and the dental materials. Friedman test showed no statistically significant changes using LF and LFpen for the commercial clear sealant group, although values tended to increase after sealing. However, the values increased significantly after thermocycling. There was a statistically significant decrease in fluorescence after application of opaque sealants. After application of the experimental nanofilled clear sealant, LF values increased only after thermocycling, whereas the LFpen values increased after sealing and after thermocycling as well. The intraclass correlation coefficient ranged from 0.87 to 0.96 for interexaminer and 0.82 to 0.94 for intraexaminer reproducibility. It was shown that pit and fissure sealants influence LF and LFpen readings, with the values increasing or decreasing according to the material used. In conclusion, both laser fluorescence devices could be useful as an adjunct to detect occlusal caries under unfilled clear sealants. Nevertheless, surfaces sealed with clear nanofilled material could be assessed using only the LF device.
Resumo:
This study compared the performance of fluorescence-based methods, radiographic examination, and International Caries Detection and Assessment System (ICDAS) II on occlusal surfaces. One hundred and nineteen permanent human molars were assessed twice by 2 experienced dentists using the laser fluorescence (LF and LFpen) and fluorescence camera (FC) devices, ICDAS II and bitewing radiographs (BW). After measuring, the teeth were histologically prepared and assessed for caries extension. The sensitivities for dentine caries detection were 0.86 (FC), 0.78 (LFpen), 0.73 (ICDAS II), 0.51 (LF) and 0.34 (BW). The specificities were 0.97 (BW), 0.89 (LF), 0.65 (ICDAS II), 0.63 (FC) and 0.56 (LFpen). BW presented the highest values of likelihood ratio (LR)+ (12.47) and LR- (0.68). Rank correlations with histology were 0.53 (LF), 0.52 (LFpen), 0.41 (FC), 0.59 (ICDAS II) and 0.57 (BW). The area under the ROC curve varied from 0.72 to 0.83. Inter- and intraexaminer intraclass correlation values were respectively 0.90 and 0.85 (LF), 0.93 and 0.87 (LFpen) and 0.85 and 0.76 (FC). The ICDAS II kappa values were 0.51 (interexaminer) and 0.61 (intraexaminer). The BW kappa values were 0.50 (interexaminer) and 0.62 (intraexaminer). The Bland and Altman limits of agreement were 46.0 and 38.2 (LF), 55.6 and 40.0 (LFpen) and 1.12 and 0.80 (FC), for intra- and interexaminer reproducibilities. The posttest probability for dentine caries detection was high for BW and LF. In conclusion, LFpen, FC and ICDAS II presented better sensitivity and LF and BW better specificity. ICDAS II combined with BW showed the best performance and is the best combination for detecting caries on occlusal surfaces.
Resumo:
PURPOSE: We determined and compared urethral pressure measurements using air charged and microtip catheters in a prospective, single-blind, randomized trial. MATERIALS AND METHODS: A consecutive series of 64 women referred for urodynamic investigation underwent sequential urethral pressure measurements using an air charged and a microtip catheter in randomized order. Patients were blinded to the type and sequence of catheter used. Agreement between the 2 catheter systems was assessed using the Bland and Altman 95% limits of agreement method. RESULTS: Intraclass correlation coefficients of air charged and microtip catheters for maximum urethral closure pressure at rest were 0.97 and 0.93, and for functional profile length they were 0.9 and 0.78, respectively. Pearson's correlation coefficients and Lin's concordance coefficients of air charged and microtip catheters were r = 0.82 and rho = 0.79 for maximum urethral closure pressure at rest, and r = 0.73 and rho = 0.7 for functional profile length, respectively. When applying the Bland and Altman method, air charged catheters gave higher readings than microtip catheters for maximum urethral closure pressure at rest (mean difference 7.5 cm H(2)O) and functional profile length (mean difference 1.8 mm). There were wide 95% limits of agreement for differences in maximum urethral closure pressure at rest (-24.1 to 39 cm H(2)O) and functional profile length (-7.7 to 11.3 mm). CONCLUSIONS: For urethral pressure measurement the air charged catheter is at least as reliable as the microtip catheter and it generally gives higher readings. However, air charged and microtip catheters cannot be used interchangeably for clinical purposes because of insufficient agreement. Hence, clinicians should be aware that air charged and microtip catheters may yield completely different results, and these differences should be acknowledged during clinical decision making.
Resumo:
This study defines the feasibility of utilizing three-dimensional (3D) gradient-echo (GRE) MRI at 1.5T for T(2)* mapping to assess hip joint cartilage degenerative changes using standard morphological MR grading while comparing it to delayed gadolinium-enhanced MRI of cartilage (dGEMRIC). MRI was obtained from 10 asymptomatic young adult volunteers and 33 patients with symptomatic femoroacetabular impingement (FAI). The protocol included T(2)* mapping without gadolinium-enhancement utilizing a 3D-GRE sequence with six echoes, and after gadolinium injection, routine hip sequences, and a dual-flip-angle 3D-GRE sequence for dGEMRIC T(1) mapping. Cartilage was classified as normal, with mild changes, or with severe degenerative changes based on morphological MRI. T(1) and T(2)* findings were subsequently correlated. There were significant differences between volunteers and patients in normally-rated cartilage only for T(1) values. Both T(1) and T(2)* values decreased significantly with the various grades of cartilage damage. There was a statistically significant correlation between standard MRI and T(2)* (T(1)) (P < 0.05). High intraclass correlation was noted for both T(1) and T(2)*. Correlation factor was 0.860 to 0.954 (T(2)*-T(1) intraobserver) and 0.826 to 0.867 (T(2)*-T(1) interobserver). It is feasible to gather further information about cartilage status within the hip joint using GRE T(2)* mapping at 1.5T.
Resumo:
OBJECTIVE: To evaluate the reliability and validity of a novel ultrasound (US) imaging method to measure metacarpophalangeal (MCP) and proximal interphalangeal (PIP) finger joint cartilage. METHODS: We examined 48 patients with rheumatoid arthritis (RA), 18 patients with osteoarthritis (OA), 24 patients with unclassified arthritis of the finger joints, and 34 healthy volunteers. The proximal cartilage layer of MCP and PIP joints for fingers 2-5 was bilaterally visualized from a posterior view, with joints in approximately 90 degrees flexion. Cartilage thickness was measured with integrated tools on static images. External validity was assessed by measuring radiologic joint space width (JSW) and a numeric joint space narrowing (JSN) score in patients with RA. RESULTS: Precise measurement was possible for 97.5% of MCP and 94.2% of PIP joints. Intraclass correlation coefficients for bilateral total joint US scores were 0.844 (95% confidence interval [95% CI] 0.648-0.935) for interobserver comparisons and 0.928 (95% CI 0.826-0.971) for intraobserver comparisons (using different US devices). The US score correlated with JSN for both hands (adjusted R(2) = 0.513, P < 0.001) and JSW of the same finger joints (adjusted R(2) = 0.635, P < 0.001). Reduced cartilage shown by US allowed discrimination of early symptomatic OA versus early RA and healthy joints. In patients with RA, US scores correlated with duration of treatment-resistant, progressive RA. CONCLUSION: The US method of direct visualization and quantification of cartilage in MCP and PIP joints is objective, reliable, valid, and can be useful for diagnostic purposes in patients with arthritis.