9 resultados para Intracerebral self-stimulation
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Stimulation of human epileptic tissue can induce rhythmic, self-terminating responses on the EEG or ECoG. These responses play a potentially important role in localising tissue involved in the generation of seizure activity, yet the underlying mechanisms are unknown. However, in vitro evidence suggests that self-terminating oscillations in nervous tissue are underpinned by non-trivial spatio-temporal dynamics in an excitable medium. In this study, we investigate this hypothesis in spatial extensions to a neural mass model for epileptiform dynamics. We demonstrate that spatial extensions to this model in one and two dimensions display propagating travelling waves but also more complex transient dynamics in response to local perturbations. The neural mass formulation with local excitatory and inhibitory circuits, allows the direct incorporation of spatially distributed, functional heterogeneities into the model. We show that such heterogeneities can lead to prolonged reverberating responses to a single pulse perturbation, depending upon the location at which the stimulus is delivered. This leads to the hypothesis that prolonged rhythmic responses to local stimulation in epileptogenic tissue result from repeated self-excitation of regions of tissue with diminished inhibitory capabilities. Combined with previous models of the dynamics of focal seizures this macroscopic framework is a first step towards an explicit spatial formulation of the concept of the epileptogenic zone. Ultimately, an improved understanding of the pathophysiologic mechanisms of the epileptogenic zone will help to improve diagnostic and therapeutic measures for treating epilepsy.
Resumo:
Repetitive transcranial magnetic stimulation (rTMS) is a recent putative treatment for affective disorders. Several studies have demonstrated antidepressant effects of rTMS in younger patients; we aimed to assess its effect in older outpatients with treatment-resistant major depression. Twenty-four outpatients (mean age=62 years, S.D.=12) with major depression were randomized for sham or real stimulation and received 10 daily rTMS sessions (20 Hz, 2-s trains, 28-s intertrain intervals, 100% of motor threshold) in addition to the antidepressant medication. For sham stimulation, the coil was tilted 90 degrees. Depression severity was assessed using the Hamilton Depression Rating Scale, the Beck Depression Inventory, items from the NIMH self-rated symptom scale, and a visual analog depression scale. Mini-Mental Status Examination performance, memory, and executive and attentional functions were measured to control for cognitive side effects. Depression ratings revealed significant antidepressant effects within 2 weeks in both sham and real stimulation groups; however, there were no between-group differences. Treatment with rTMS was safe; adverse events were rare and not more prevalent in either group, and cognitive assessment did not show any deterioration. We were unable to demonstrate any additional antidepressant effects of real stimulation in elderly patients with treatment-resistant major depression. Therapeutic effects of rTMS in this clinically challenging patient group remain to be demonstrated.
Resumo:
Self-control is defined as the process in which thoughts, emotions, or prepotent responses are inhibited to efficiently enact a more focal goal. Self-control not only allows for more adaptive individual decision making but also promotes adaptive social decision making. In this chapter, we examine a burgeoning area of interdisciplinary research: the neuroscience of self-control in social decision making. We examine research on self-control in complex social contexts examined from a social neuroscience perspective. We review correlational evidence from neuroimaging studies and causal evidence from neuromodulation studies (i.e., brain stimulation). We specifically highlight research that shows that self-control involves the lateral prefrontal cortex (PFC) across a number of social domains and behaviors. Research has also begun to directly integrate nonsocial with social forms of self-control, showing that the basic neurobiological processes involved in stopping a motor response appear to be involved in social contexts that require self-control. Further, neural traits, such as baseline activation in the lateral PFC, can explain sources of individual differences in self-control capacity. We explore whether techniques that change brain functioning could target neural mechanisms related to self-control capacity to potentially enhance self-control in social behavior. Finally, we discuss several research questions ripe for examination. We broadly suggest that future research can now turn to exploring how neural traits and situational affordances interact to impact self-control in social decision making in order to continue to elucidate the processes that allow people to maintain and realize stable goals in a dynamic and often uncertain social environment.
Resumo:
Multichannel EEG of an advanced meditator was recorded during four different, repeated meditations. Locations of intracerebral source gravity centers as well as Low Resolution Electromagnetic Tomography (LORETA) functional images of the EEG 'gamma' (35-44 Hz) frequency band activity differed significantly between meditations. Thus, during volitionally self-initiated, altered states of consciousness that were associated with different subjective meditation states, different brain neuronal populations were active. The brain areas predominantly involved during the self-induced meditation states aiming at visualization (right posterior) and verbalization (left central) agreed with known brain functional neuroanatomy. The brain areas involved in the self-induced, meditational dissolution and reconstitution of the experience of the self (right fronto-temporal) are discussed in the context of neural substrates implicated in normal self-representation and reality testing, as well as in depersonalization disorders and detachment from self after brain lesions.
Resumo:
RATIONALE People often face decisions that pit self-interested behavior aimed at maximizing personal reward against normative behavior such as acting cooperatively, which benefits others. The threat of social sanctions for defying the fairness norm prevents people from behaving overly selfish. Thus, normative behavior is influenced by both seeking rewards and avoiding punishment. However, the neurochemical processes mediating the impact of these influences remain unknown. Several lines of evidence link the dopaminergic system to reward and punishment processing, respectively, but this evidence stems from studies in non-social contexts. OBJECTIVES The present study investigates dopaminergic drug effects on individuals' reward seeking and punishment avoidance in social interaction. METHODS Two-hundred one healthy male participants were randomly assigned to receive 300 mg of L-3,4-dihydroxyphenylalanine (L-DOPA) or a placebo before playing an economic bargaining game. This game involved two conditions, one in which unfair behavior could be punished and one in which unfair behavior could not be punished. RESULTS In the absence of punishment threats, L-DOPA administration led to more selfish behavior, likely mediated through an increase in reward seeking. In contrast, L-DOPA administration had no significant effect on behavior when faced with punishment threats. CONCLUSIONS The results of this study broaden the role of the dopaminergic system in reward seeking to human social interactions. We could show that even a single dose of a dopaminergic drug may bring selfish behavior to the fore, which in turn may shed new light on potential causal relationships between the dopaminergic system and norm abiding behaviors in certain clinical subpopulations.
Resumo:
Disruption of function of left, but not right, lateral prefrontal cortex (LPFC) with low-frequency repetitive transcranial magnetic stimulation (rTMS) increased choices of immediate rewards over larger delayed rewards. rTMS did not change choices involving only delayed rewards or valuation judgments of immediate and delayed rewards, providing causal evidence for a neural lateral-prefrontal cortex-based self-control mechanism in intertemporal choice.