11 resultados para Internet: Web 2.0
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
In Anlehnung an Begriffe wie Web 2.0, an dem sich Internet-Nutzer mit unterschiedlichen Aktivitäten beteiligen können, und Enterprise 2.0 wird das Konzept der „Wartung 2.0“ entwickelt. Bei diesem Ansatz steht die Einbeziehung von Nutzergemeinschaften zur Verbesserung des Webauftritts und insbesondere von B2C-Systemen im Vordergrund. Wartung 2.0 ist eine Komponente des Web Engineerings und damit auch ein Element des von Lutz J. Heinrich vertretenen Konzepts des Information Engineerings
Resumo:
Researchers suggest that personalization on the Semantic Web adds up to a Web 3.0 eventually. In this Web, personalized agents process and thus generate the biggest share of information rather than humans. In the sense of emergent semantics, which supplements traditional formal semantics of the Semantic Web, this is well conceivable. An emergent Semantic Web underlying fuzzy grassroots ontology can be accomplished through inducing knowledge from users' common parlance in mutual Web 2.0 interactions [1]. These ontologies can also be matched against existing Semantic Web ontologies, to create comprehensive top-level ontologies. On the Web, if augmented with information in the form of restrictions andassociated reliability (Z-numbers) [2], this collection of fuzzy ontologies constitutes an important basis for an implementation of Zadeh's restriction-centered theory of reasoning and computation (RRC) [3]. By considering real world's fuzziness, RRC differs from traditional approaches because it can handle restrictions described in natural language. A restriction is an answer to a question of the value of a variable such as the duration of an appointment. In addition to mathematically well-defined answers, RRC can likewise deal with unprecisiated answers as "about one hour." Inspired by mental functions, it constitutes an important basis to leverage present-day Web efforts to a natural Web 3.0. Based on natural language information, RRC may be accomplished with Z-number calculation to achieve a personalized Web reasoning and computation. Finally, through Web agents' understanding of natural language, they can react to humans more intuitively and thus generate and process information.
Resumo:
This chapter explores cultural protectionism 2.0, i.e. the normative dimensions of cultural diversity policies in the global digital space, asking what adjustments are needed and in fact, how feasible the entire project of diversity regulation in this environment may be. The complexities of the shift from offline to online and from analogue to digital, and the inherent policy challenges are illustrated with some (positive and negative) instances of existing media initiatives. Taking into account the specificities of cyberspace and in a forward-looking manner, the chapter suggests some adjustments to current media policy practices in order to better serve the goal of sustainably diverse cultural environment.
Resumo:
The use of information technology (IT) in dentistry is far ranging. In order to produce a working document for the dental educator, this paper focuses on those methods where IT can assist in the education and competence development of dental students and dentists (e.g. e-learning, distance learning, simulations and computer-based assessment). Web pages and other information-gathering devices have become an essential part of our daily life, as they provide extensive information on all aspects of our society. This is mirrored in dental education where there are many different tools available, as listed in this report. IT offers added value to traditional teaching methods and examples are provided. In spite of the continuing debate on the learning effectiveness of e-learning applications, students request such approaches as an adjunct to the traditional delivery of learning materials. Faculty require support to enable them to effectively use the technology to the benefit of their students. This support should be provided by the institution and it is suggested that, where possible, institutions should appoint an e-learning champion with good interpersonal skills to support and encourage faculty change. From a global prospective, all students and faculty should have access to e-learning tools. This report encourages open access to e-learning material, platforms and programs. The quality of such learning materials must have well defined learning objectives and involve peer review to ensure content validity, accuracy, currency, the use of evidence-based data and the use of best practices. To ensure that the developers' intellectual rights are protected, the original content needs to be secure from unauthorized changes. Strategies and recommendations on how to improve the quality of e-learning are outlined. In the area of assessment, traditional examination schemes can be enriched by IT, whilst the Internet can provide many innovative approaches. Future trends in IT will evolve around improved uptake and access facilitated by the technology (hardware and software). The use of Web 2.0 shows considerable promise and this may have implications on a global level. For example, the one-laptop-per-child project is the best example of what Web 2.0 can do: minimal use of hardware to maximize use of the Internet structure. In essence, simple technology can overcome many of the barriers to learning. IT will always remain exciting, as it is always changing and the users, whether dental students, educators or patients are like chameleons adapting to the ever-changing landscape.
Resumo:
Dieser Beitrag zeigt auf, welche Möglichkeiten der Einsatz von Web 3.0 Monitoringtechniken im Stakeholder Management bietet. Das Ziel dieses Managements ist es, unternehmerischenVorhaben zu Akzeptanz und Durchsetzungskraft zu verhelfen, indem Ansprüche an Unternehmensentscheide aktiv in den Managementprozess mit eingebunden werden.Stakeholdermaps stellen diese Ansprüche visuell dar. Sie greifen einerseits auf nicht-öffentliche Inhalte zurück und andererseits auf Inhalte, die öffentlich (zumeist im Web) verfügbar sind. Das Semantische Web bietet Möglichkeiten, diese öffentlichen Inhalte nicht nur deskriptiv (was wird argumentiert?) darzustellen, sondern auch Zusammenhänge(z.B. Netzwerke, Kontextualisierungen, Referenzierungen, Gewichtungen) aufzuzeigen. Das vorgestellte Framework kann Grundlage für die öffentlichen Inhalte von Stakeholdermaps sein.
Resumo:
PLATO 2.0 has recently been selected for ESA’s M3 launch opportunity (2022/24). Providing accurate key planet parameters (radius, mass, density and age) in statistical numbers, it addresses fundamental questions such as: How do planetary systems form and evolve? Are there other systems with planets like ours, including potentially habitable planets? The PLATO 2.0 instrument consists of 34 small aperture telescopes (32 with 25 s readout cadence and 2 with 2.5 s candence) providing a wide field-of-view (2232 deg 2) and a large photometric magnitude range (4–16 mag). It focusses on bright (4–11 mag) stars in wide fields to detect and characterize planets down to Earth-size by photometric transits, whose masses can then be determined by ground-based radial-velocity follow-up measurements. Asteroseismology will be performed for these bright stars to obtain highly accurate stellar parameters, including masses and ages. The combination of bright targets and asteroseismology results in high accuracy for the bulk planet parameters: 2 %, 4–10 % and 10 % for planet radii, masses and ages, respectively. The planned baseline observing strategy includes two long pointings (2–3 years) to detect and bulk characterize planets reaching into the habitable zone (HZ) of solar-like stars and an additional step-and-stare phase to cover in total about 50 % of the sky. PLATO 2.0 will observe up to 1,000,000 stars and detect and characterize hundreds of small planets, and thousands of planets in the Neptune to gas giant regime out to the HZ. It will therefore provide the first large-scale catalogue of bulk characterized planets with accurate radii, masses, mean densities and ages. This catalogue will include terrestrial planets at intermediate orbital distances, where surface temperatures are moderate. Coverage of this parameter range with statistical numbers of bulk characterized planets is unique to PLATO 2.0. The PLATO 2.0 catalogue allows us to e.g.: - complete our knowledge of planet diversity for low-mass objects, - correlate the planet mean density-orbital distance distribution with predictions from planet formation theories,- constrain the influence of planet migration and scattering on the architecture of multiple systems, and - specify how planet and system parameters change with host star characteristics, such as type, metallicity and age. The catalogue will allow us to study planets and planetary systems at different evolutionary phases. It will further provide a census for small, low-mass planets. This will serve to identify objects which retained their primordial hydrogen atmosphere and in general the typical characteristics of planets in such low-mass, low-density range. Planets detected by PLATO 2.0 will orbit bright stars and many of them will be targets for future atmosphere spectroscopy exploring their atmosphere. Furthermore, the mission has the potential to detect exomoons, planetary rings, binary and Trojan planets. The planetary science possible with PLATO 2.0 is complemented by its impact on stellar and galactic science via asteroseismology as well as light curves of all kinds of variable stars, together with observations of stellar clusters of different ages. This will allow us to improve stellar models and study stellar activity. A large number of well-known ages from red giant stars will probe the structure and evolution of our Galaxy. Asteroseismic ages of bright stars for different phases of stellar evolution allow calibrating stellar age-rotation relationships. Together with the results of ESA’s Gaia mission, the results of PLATO 2.0 will provide a huge legacy to planetary, stellar and galactic science.
Resumo:
This paper presents a software prototype of a personal digital assistant 2.0. Based on soft computing methods and cognitive computing this mobile application prototype improves calendar and mobility management in cognitive cities. Applying fuzzy cognitive maps and evolutionary algorithms, the prototype represents a next step towards the realization of cognitive cities (i.e., smart cities enhanced with cognition). A user scenario and a test version of the prototype are included for didactical reasons.