33 resultados para Interlaminar shear
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
In the developing chicken embryo yolk sac vasculature, the expression of arterial identity genes requires arterial hemodynamic conditions. We hypothesize that arterial flow must provide a unique signal that is relevant for supporting arterial identity gene expression and is absent in veins. We analyzed factors related to flow, pressure and oxygenation in the chicken embryo vitelline vasculature in vivo. The best discrimination between arteries and veins was obtained by calculating the maximal pulsatile increase in shear rate relative to the time-averaged shear rate in the same vessel: the relative pulse slope index (RPSI). RPSI was significantly higher in arteries than veins. Arterial endothelial cells exposed to pulsatile shear in vitro augmented arterial marker expression as compared with exposure to constant shear. The expression of Gja5 correlated with arterial flow patterns: the redistribution of arterial flow provoked by vitelline artery ligation resulted in flow-driven collateral arterial network formation and was associated with increased expression of Gja5. In situ hybridization in normal and ligation embryos confirmed that Gja5 expression is confined to arteries and regulated by flow. In mice, Gja5 (connexin 40) was also expressed in arteries. In the adult, increased flow drives arteriogenesis and the formation of collateral arterial networks in peripheral occlusive diseases. Genetic ablation of Gja5 function in mice resulted in reduced arteriogenesis in two occlusion models. We conclude that pulsatile shear patterns may be central for supporting arterial identity, and that arterial Gja5 expression plays a functional role in flow-driven arteriogenesis.
Resumo:
Endothelial ICAM-1 and ICAM-2 were shown to be essential for T cell diapedesis across the blood-brain barrier (BBB) in vitro under static conditions. Crawling of T cells prior to diapedesis was only recently revealed to occur preferentially against the direction of blood flow on the endothelial surface of inflamed brain microvessels in vivo. Using live cell-imaging techniques, we prove that Th1 memory/effector T cells predominantly crawl against the direction of flow on the surface of BBB endothelium in vitro. Analysis of T cell interaction with wild-type, ICAM-1-deficient, ICAM-2-deficient, or ICAM-1 and ICAM-2 double-deficient primary mouse brain microvascular endothelial cells under physiological flow conditions allowed us to dissect the individual contributions of endothelial ICAM-1, ICAM-2, and VCAM-1 to shear-resistant T cell arrest, polarization, and crawling. Although T cell arrest was mediated by endothelial ICAM-1 and VCAM-1, T cell polarization and crawling were mediated by endothelial ICAM-1 and ICAM-2 but not by endothelial VCAM-1. Therefore, our data delineate a sequential involvement of endothelial ICAM-1 and VCAM-1 in mediating shear-resistant T cell arrest, followed by endothelial ICAM-1 and ICAM-2 in mediating T cell crawling to sites permissive for diapedesis across BBB endothelium.
Resumo:
ADAMTS1 inhibits capillary sprouting, and since capillary sprouts do not experience the shear stress caused by blood flow, this study undertook to clarify the relationship between shear stress and ADAMTS1. It was found that endothelial cells exposed to shear stress displayed a strong upregulation of ADAMTS1, dependent upon both the magnitude and duration of their exposure. Investigation of the underlying pathways demonstrated involvement of phospholipase C, phosphoinositide 3-kinase, and nitric oxide. Forkhead box protein O1 was identified as a likely inhibitor of the system, as its knockdown was followed by a slight increase in ADAMTS1 expression. In silico prediction displayed a transcriptional binding site for Forkhead box protein O1 in the promotor region of the ADAMTS1 gene, as well as sites for nuclear factor 1, SP1, and AP-1. The anti-angiogenic effects of ADAMTS1 were attributed to its cleavage of thrombospondin 1 into a 70-kDa fragment, and a significant enhancement of this fragment was indeed demonstrated by immunoblotting shear stress-treated cells. Accordingly, scratch wound closure displayed a slowdown in conditioned medium from shear stress-treated endothelial cells, an effect that could be completely blocked by a knockdown of thrombospondin 1 and partially blocked by a knockdown of ADAMTS1. Non-perfused capillary sprouts in rat mesenteries stained negative for ADAMTS1, while vessels in the microcirculation that had already experienced blood flow yielded the opposite results. The shear stress-dependent expression of ADAMTS1 in vitro was therefore also demonstrated in vivo and thereby confirmed as a mechanism connecting blood flow with the regulation of angiogenesis.
Resumo:
The alpha4beta1 integrin is an essential adhesion molecule for recruitment of circulating lymphocytes into lymphoid organs and peripheral sites of inflammation. Chemokines stimulate alpha4beta1 adhesive activity allowing lymphocyte arrest on endothelium and subsequent diapedesis. Activation of the GTPase Rac by the guanine-nucleotide exchange factor Vav1 promoted by CXCL12 controls T lymphocyte adhesion mediated by alpha4beta1. In this study, we investigated the role of DOCK2, a lymphocyte guanine-nucleotide exchange factor also involved in Rac activation, in CXCL12-stimulated human T lymphocyte adhesion mediated by alpha4beta1. Using T cells transfected with DOCK2 mutant forms defective in Rac activation or with DOCK2 small interfering RNA, we demonstrate that DOCK2 is needed for efficient chemokine-stimulated lymphocyte attachment to VCAM-1 under shear stress. Flow chamber, soluble binding, and cell spreading assays identified the strengthening of alpha4beta1-VCAM-1 interaction, involving high affinity alpha4beta1 conformations, as the adhesion step mainly controlled by DOCK2 activity. The comparison of DOCK2 and Vav1 involvement in CXCL12-promoted Rac activation and alpha4beta1-dependent human T cell adhesion indicated a more prominent role of Vav1 than DOCK2. These results suggest that DOCK2-mediated signaling regulates chemokine-stimulated human T lymphocyte alpha4beta1 adhesive activity, and that cooperation with Vav1 might be required to induce sufficient Rac activation for efficient adhesion. In contrast, flow chamber experiments using lymph node and spleen T cells from DOCK2(-/-) mice revealed no significant alterations in CXCL12-promoted adhesion mediated by alpha4beta1, indicating that DOCK2 activity is dispensable for triggering of this adhesion in mouse T cells, and suggesting that Rac activation plays minor roles in this process.
Resumo:
Binding of thrombospondin-1 (TSP-1) to the CD36 receptor inhibits angiogenesis and induces apoptosis in endothelial cells (EC). Conversely, matrix-bound TSP-1 supports vessel formation. In this study we analyzed the shear stress-dependent expression of TSP-1 and CD36 in endothelial cells in vitro and in vivo to reveal its putative role in the blood flow-induced remodelling of vascular networks. Shear stress was applied to EC using a cone-and-plate apparatus and gene expression was analyzed by RT-PCR, Northern and Western blot. Angiogenesis in skeletal muscles of prazosin-fed (50 mg/l drinking water; 4 d) mice was assessed by measuring capillary-to-fiber (C/F) ratios. Protein expression in whole muscle homogenates (WMH) or BS-1 lectin-enriched EC fractions (ECF) was analyzed by Western blot. Shear stress downregulated TSP-1 and CD36 expression in vitro in a force- and time-dependent manner sustained for at least 72 h and reversible by restoration of no-flow conditions. In vivo, shear stress-driven increase of C/F in prazosin-fed mice was associated with reduced expression of TSP-1 and CD36 in ECF, while TSP-1 expression in WMH was increased. Down-regulation of endothelial TSP-1/CD36 by shear stress suggests a mechanism for inhibition of apoptosis in perfused vessels and pruning in the absence of flow. The increase of extra-endothelial (e.g. matrix-bound) TSP-1 could support a splitting type of vessel growth.
Resumo:
Acute thrombotic arterial occlusion is the leading cause of morbidity and mortality in the Western world. Von Willebrand factor is thought to be the only indispensable adhesive substrate to promote thrombus formation in high shear environments. We found that thrombospondin-1, a glycoprotein enriched in arteriosclerotic plaques, might function as an alternative substrate for thrombus formation. Platelets adhered to thrombospondin-1 in a shear dependent manner with an optimum shear as found in stenosed arteries. Adhesion is extremely firm, with no detachment of platelets up to a shear rate of 4000 s(-1). Experiments using platelets from a patient completely lacking von Willebrand factor showed that von Willebrand factor is not involved in platelet binding to thrombospondin-1. Platelet adhesion to thrombospondin-1 is not mediated via beta3-integrins or GPIa. CD36 partially mediates the adhesion of pre-activated platelets. We identified GPIb as high shear adhesion-receptor for thrombospondin-1. Soluble GPIb, as well as antibodies against the GPIb, blocked platelet adhesion almost completely. The new discovered thrombospondin-1-GPIb adhesion axis under arterial shear conditions might be important, not only during thrombus formation but also for pathological processes where other cells bind to the endothelium or subendothelium, including arteriosclerosis, inflammation and tumor metastasis, and a promising therapeutic target.
Resumo:
Transcription factor Foxo-1 can be inactivated via Akt-mediated phosphorylation. Since shear stress activates Akt, we determined whether Foxo-1 and the Foxo-1-dependent, angiogenesis-related Ang-2/Tie2-system are influenced by shear stress in endothelial cells. Expression of Foxo-1 and its target genes p27Kip1 and Ang-2 was decreased under shear stress (6dyn/cm(2), 24h), nuclear exclusion of Foxo-1 by phosphorylation increased. eNOS and Tie2 were upregulated. No effects on Ang-1 expression were detected. In conclusion, Foxo-1 and Ang-2/Tie2 are part of the molecular response to shear stress, which may regulate angiogenesis.
Effect of zirconia surface treatments on the shear strength of zirconia/veneering ceramic composites
Resumo:
Aim of the investigation was to assess the effect of different surface treatments on the bond strength of veneering ceramics to zirconia. In a shear test, the influences of polishing, sandblasting, and silica-coating of the zirconia surface on bonding were assessed with five different veneering ceramics. In addition the effect of liner application was examined. With one veneering ceramic, the impact of regeneration firing of zirconia was also evaluated. Statistical analysis was performed with one-way ANOVA and post hoc Scheffé's test. Failure in every case occurred in the veneering ceramic adjacent to the interface with a thin layer of ceramic remaining on the zirconia surface, indicating that bond strength was higher than the cohesive strength of the veneering ceramic. Shear strength ranged from 23.5 +/- 3.4 MPa to 33.0 +/- 6.8 MPa without explicit correlation to the respective surface treatment. Regeneration firing significantly decreased the shear strength of both polished and sandblasted surfaces. Findings of this study revealed that bonding between veneering ceramics and zirconia might be based on chemical bonds. On this note, sandblasting was not a necessary surface pretreatment to enhance bond strength and that regeneration firing was not recommended.