8 resultados para Interest rates -- Mathematical models.
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
BACKGROUND The success of an intervention to prevent the complications of an infection is influenced by the natural history of the infection. Assumptions about the temporal relationship between infection and the development of sequelae can affect the predicted effect size of an intervention and the sample size calculation. This study investigates how a mathematical model can be used to inform sample size calculations for a randomised controlled trial (RCT) using the example of Chlamydia trachomatis infection and pelvic inflammatory disease (PID). METHODS We used a compartmental model to imitate the structure of a published RCT. We considered three different processes for the timing of PID development, in relation to the initial C. trachomatis infection: immediate, constant throughout, or at the end of the infectious period. For each process we assumed that, of all women infected, the same fraction would develop PID in the absence of an intervention. We examined two sets of assumptions used to calculate the sample size in a published RCT that investigated the effect of chlamydia screening on PID incidence. We also investigated the influence of the natural history parameters of chlamydia on the required sample size. RESULTS The assumed event rates and effect sizes used for the sample size calculation implicitly determined the temporal relationship between chlamydia infection and PID in the model. Even small changes in the assumed PID incidence and relative risk (RR) led to considerable differences in the hypothesised mechanism of PID development. The RR and the sample size needed per group also depend on the natural history parameters of chlamydia. CONCLUSIONS Mathematical modelling helps to understand the temporal relationship between an infection and its sequelae and can show how uncertainties about natural history parameters affect sample size calculations when planning a RCT.
Resumo:
Background: WHO's 2013 revisions to its Consolidated Guidelines on antiretroviral drugs recommend routine viral load monitoring, rather than clinical or immunological monitoring, as the preferred monitoring approach on the basis of clinical evidence. However, HIV programmes in resource-limited settings require guidance on the most cost-effective use of resources in view of other competing priorities such as expansion of antiretroviral therapy coverage. We assessed the cost-effectiveness of alternative patient monitoring strategies. Methods: We evaluated a range of monitoring strategies, including clinical, CD4 cell count, and viral load monitoring, alone and together, at different frequencies and with different criteria for switching to second-line therapies. We used three independently constructed and validated models simultaneously. We estimated costs on the basis of resource use projected in the models and associated unit costs; we quantified impact as disability-adjusted life years (DALYs) averted. We compared alternatives using incremental cost-effectiveness analysis. Findings: All models show that clinical monitoring delivers significant benefit compared with a hypothetical baseline scenario with no monitoring or switching. Regular CD4 cell count monitoring confers a benefit over clinical monitoring alone, at an incremental cost that makes it affordable in more settings than viral load monitoring, which is currently more expensive. Viral load monitoring without CD4 cell count every 6—12 months provides the greatest reductions in morbidity and mortality, but incurs a high cost per DALY averted, resulting in lost opportunities to generate health gains if implemented instead of increasing antiretroviral therapy coverage or expanding antiretroviral therapy eligibility. Interpretation: The priority for HIV programmes should be to expand antiretroviral therapy coverage, firstly at CD4 cell count lower than 350 cells per μL, and then at a CD4 cell count lower than 500 cells per μL, using lower-cost clinical or CD4 monitoring. At current costs, viral load monitoring should be considered only after high antiretroviral therapy coverage has been achieved. Point-of-care technologies and other factors reducing costs might make viral load monitoring more affordable in future. Funding: Bill & Melinda Gates Foundation, WHO.
Resumo:
Mathematical models of disease progression predict disease outcomes and are useful epidemiological tools for planners and evaluators of health interventions. The R package gems is a tool that simulates disease progression in patients and predicts the effect of different interventions on patient outcome. Disease progression is represented by a series of events (e.g., diagnosis, treatment and death), displayed in a directed acyclic graph. The vertices correspond to disease states and the directed edges represent events. The package gems allows simulations based on a generalized multistate model that can be described by a directed acyclic graph with continuous transition-specific hazard functions. The user can specify an arbitrary hazard function and its parameters. The model includes parameter uncertainty, does not need to be a Markov model, and may take the history of previous events into account. Applications are not limited to the medical field and extend to other areas where multistate simulation is of interest. We provide a technical explanation of the multistate models used by gems, explain the functions of gems and their arguments, and show a sample application.
Resumo:
In this study, the effect of time derivatives of flow rate and rotational speed was investigated on the mathematical modeling of a rotary blood pump (RBP). The basic model estimates the pressure head of the pump as a dependent variable using measured flow and speed as predictive variables. Performance of the model was evaluated by adding time derivative terms for flow and speed. First, to create a realistic working condition, the Levitronix CentriMag RBP was implanted in a sheep. All parameters from the model were physically measured and digitally acquired over a wide range of conditions, including pulsatile speed. Second, a statistical analysis of the different variables (flow, speed, and their time derivatives) based on multiple regression analysis was performed to determine the significant variables for pressure head estimation. Finally, different mathematical models were used to show the effect of time derivative terms on the performance of the models. In order to evaluate how well the estimated pressure head using different models fits the measured pressure head, root mean square error and correlation coefficient were used. The results indicate that inclusion of time derivatives of flow and speed can improve model accuracy, but only minimally.
Resumo:
BACKGROUND Partner notification is essential to the comprehensive case management of sexually transmitted infections. Systematic reviews and mathematical modelling can be used to synthesise information about the effects of new interventions to enhance the outcomes of partner notification. OBJECTIVE To study the effectiveness and cost-effectiveness of traditional and new partner notification technologies for curable sexually transmitted infections (STIs). DESIGN Secondary data analysis of clinical audit data; systematic reviews of randomised controlled trials (MEDLINE, EMBASE and Cochrane Central Register of Controlled Trials) published from 1 January 1966 to 31 August 2012 and of studies of health-related quality of life (HRQL) [MEDLINE, EMBASE, ISI Web of Knowledge, NHS Economic Evaluation Database (NHS EED), Database of Abstracts of Reviews of Effects (DARE) and Health Technology Assessment (HTA)] published from 1 January 1980 to 31 December 2011; static models of clinical effectiveness and cost-effectiveness; and dynamic modelling studies to improve parameter estimation and examine effectiveness. SETTING General population and genitourinary medicine clinic attenders. PARTICIPANTS Heterosexual women and men. INTERVENTIONS Traditional partner notification by patient or provider referral, and new partner notification by expedited partner therapy (EPT) or its UK equivalent, accelerated partner therapy (APT). MAIN OUTCOME MEASURES Population prevalence; index case reinfection; and partners treated per index case. RESULTS Enhanced partner therapy reduced reinfection in index cases with curable STIs more than simple patient referral [risk ratio (RR) 0.71; 95% confidence interval (CI) 0.56 to 0.89]. There are no randomised trials of APT. The median number of partners treated for chlamydia per index case in UK clinics was 0.60. The number of partners needed to treat to interrupt transmission of chlamydia was lower for casual than for regular partners. In dynamic model simulations, > 10% of partners are chlamydia positive with look-back periods of up to 18 months. In the presence of a chlamydia screening programme that reduces population prevalence, treatment of current partners achieves most of the additional reduction in prevalence attributable to partner notification. Dynamic model simulations show that cotesting and treatment for chlamydia and gonorrhoea reduce the prevalence of both STIs. APT has a limited additional effect on prevalence but reduces the rate of index case reinfection. Published quality-adjusted life-year (QALY) weights were of insufficient quality to be used in a cost-effectiveness study of partner notification in this project. Using an intermediate outcome of cost per infection diagnosed, doubling the efficacy of partner notification from 0.4 to 0.8 partners treated per index case was more cost-effective than increasing chlamydia screening coverage. CONCLUSIONS There is evidence to support the improved clinical effectiveness of EPT in reducing index case reinfection. In a general heterosexual population, partner notification identifies new infected cases but the impact on chlamydia prevalence is limited. Partner notification to notify casual partners might have a greater impact than for regular partners in genitourinary clinic populations. Recommendations for future research are (1) to conduct randomised controlled trials using biological outcomes of the effectiveness of APT and of methods to increase testing for human immunodeficiency virus (HIV) and STIs after APT; (2) collection of HRQL data should be a priority to determine QALYs associated with the sequelae of curable STIs; and (3) standardised parameter sets for curable STIs should be developed for mathematical models of STI transmission that are used for policy-making. FUNDING The National Institute for Health Research Health Technology Assessment programme.
Resumo:
In a network of competing species, a competitive intransitivity occurs when the ranking of competitive abilities does not follow a linear hierarchy (A > B > C but C > A). A variety of mathematical models suggests that intransitive networks can prevent or slow down competitive exclusion and maintain biodiversity by enhancing species coexistence. However, it has been difficult to assess empirically the relative importance of intransitive competition because a large number of pairwise species competition experiments are needed to construct a competition matrix that is used to parameterize existing models. Here we introduce a statistical framework for evaluating the contribution of intransitivity to community structure using species abundance matrices that are commonly generated from replicated sampling of species assemblages. We provide metrics and analytical methods for using abundance matrices to estimate species competition and patch transition matrices by using reverse-engineering and a colonization-competition model. These matrices provide complementary metrics to estimate the degree of intransitivity in the competition network of the sampled communities. Benchmark tests reveal that the proposed methods could successfully detect intransitive competition networks, even in the absence of direct measures of pairwise competitive strength. To illustrate the approach, we analyzed patterns of abundance and biomass of five species of necrophagous Diptera and eight species of their hymenopteran parasitoids that co-occur in beech forests in Germany. We found evidence for a strong competitive hierarchy within communities of flies and parasitoids. However, for parasitoids, there was a tendency towards increasing intransitivity in higher weight classes, which represented larger resource patches. These tests provide novel methods for empirically estimating the degree of intransitivity in competitive networks from observational datasets. They can be applied to experimental measures of pairwise species interactions, as well as to spatio-temporal samples of assemblages in homogenous environments or environmental gradients.