5 resultados para Interchange nets

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuroendocrine tumor (NET) entities are rare malignancies. Higher awareness and improved diagnostic methods have led to an increasing incidence of these diseases, and most oncologists deal with such patients in their daily practice. The symposium on NETs that was held in Merano (Italy) in October 2009 was organized by the German-speaking European School of Oncology (dESO) and gathered specialists from different disciplines of transalpine countries to bring together experiences and observations regarding these tumors. The goal of the meeting and of this review was to illustrate both well- and poorly differentiated NETs and to encourage interdisciplinary approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proof nets provide abstract counterparts to sequent proofs modulo rule permutations; the idea being that if two proofs have the same underlying proof-net, they are in essence the same proof. Providing a convincing proof-net counterpart to proofs in the classical sequent calculus is thus an important step in understanding classical sequent calculus proofs. By convincing, we mean that (a) there should be a canonical function from sequent proofs to proof nets, (b) it should be possible to check the correctness of a net in polynomial time, (c) every correct net should be obtainable from a sequent calculus proof, and (d) there should be a cut-elimination procedure which preserves correctness. Previous attempts to give proof-net-like objects for propositional classical logic have failed at least one of the above conditions. In Richard McKinley (2010) [22], the author presented a calculus of proof nets (expansion nets) satisfying (a) and (b); the paper defined a sequent calculus corresponding to expansion nets but gave no explicit demonstration of (c). That sequent calculus, called LK∗ in this paper, is a novel one-sided sequent calculus with both additively and multiplicatively formulated disjunction rules. In this paper (a self-contained extended version of Richard McKinley (2010) [22]), we give a full proof of (c) for expansion nets with respect to LK∗, and in addition give a cut-elimination procedure internal to expansion nets – this makes expansion nets the first notion of proof-net for classical logic satisfying all four criteria.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

UNLABELLED A high proportion of gut and bronchial neuroendocrine tumors (NETs) overexpresses somatostatin receptors, especially the sst2 subtype. It has also recently been observed that incretin receptors, namely glucagonlike peptide 1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) receptors, can be overexpressed in gut and bronchial NETs. However, because not all tumors can express these receptors in sufficient amounts, in vivo imaging with a single radioligand may not always be successful. We therefore evaluated with in vitro methods whether a cocktail of radioligands targeting these 3 receptors would improve tumor labeling. METHODS In vitro receptor autoradiography was performed on 55 NETs, comparing in each successive section of tumor the binding with a single radioligand, either (125)I-Tyr(3)-octreotide, (125)I-GLP-1(7-36)amide, or (125)I-GIP(1-30), with the binding using a cocktail of all 3 radioligands, given concomitantly under identical experimental conditions. RESULTS Using the cocktail of radioligands, all tumors without exception showed moderate to very high binding, with a receptor density corresponding to 1,000-10,000 dpm/mg of tissue; conversely, single-ligand binding, although identifying most tumors as receptor-positive, failed to detect receptors or measured only a low density of receptors below 1,000 dpm/mg in a significant number of tumors. In addition, the cocktail of radioligands always provided a homogeneous labeling of the whole tumor, whereas single radioligands occasionally showed heterogeneous labeling. CONCLUSION The study suggests that the use of a cocktail of 3 radioligands binding to somatostatin receptors, GLP-1 receptors, and GIP receptors would allow detecting virtually all NETs and labeling them homogeneously in vivo, representing a significant improvement for imaging and therapy in NETs.