4 resultados para Interactive animated map

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background The RCSB Protein Data Bank (PDB) provides public access to experimentally determined 3D-structures of biological macromolecules (proteins, peptides and nucleic acids). While various tools are available to explore the PDB, options to access the global structural diversity of the entire PDB and to perceive relationships between PDB structures remain very limited. Methods A 136-dimensional atom pair 3D-fingerprint for proteins (3DP) counting categorized atom pairs at increasing through-space distances was designed to represent the molecular shape of PDB-entries. Nearest neighbor searches examples were reported exemplifying the ability of 3DP-similarity to identify closely related biomolecules from small peptides to enzyme and large multiprotein complexes such as virus particles. The principle component analysis was used to obtain the visualization of PDB in 3DP-space. Results The 3DP property space groups proteins and protein assemblies according to their 3D-shape similarity, yet shows exquisite ability to distinguish between closely related structures. An interactive website called PDB-Explorer is presented featuring a color-coded interactive map of PDB in 3DP-space. Each pixel of the map contains one or more PDB-entries which are directly visualized as ribbon diagrams when the pixel is selected. The PDB-Explorer website allows performing 3DP-nearest neighbor searches of any PDB-entry or of any structure uploaded as protein-type PDB file. All functionalities on the website are implemented in JavaScript in a platform-independent manner and draw data from a server that is updated daily with the latest PDB additions, ensuring complete and up-to-date coverage. The essentially instantaneous 3DP-similarity search with the PDB-Explorer provides results comparable to those of much slower 3D-alignment algorithms, and automatically clusters proteins from the same superfamilies in tight groups. Conclusion A chemical space classification of PDB based on molecular shape was obtained using a new atom-pair 3D-fingerprint for proteins and implemented in a web-based database exploration tool comprising an interactive color-coded map of the PDB chemical space and a nearest neighbor search tool. The PDB-Explorer website is freely available at www.​cheminfo.​org/​pdbexplorer and represents an unprecedented opportunity to interactively visualize and explore the structural diversity of the PDB.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The MQN-mapplet is a Java application giving access to the structure of small molecules in large databases via color-coded maps of their chemical space. These maps are projections from a 42-dimensional property space defined by 42 integer value descriptors called molecular quantum numbers (MQN), which count different categories of atoms, bonds, polar groups, and topological features and categorize molecules by size, rigidity, and polarity. Despite its simplicity, MQN-space is relevant to biological activities. The MQN-mapplet allows localization of any molecule on the color-coded images, visualization of the molecules, and identification of analogs as neighbors on the MQN-map or in the original 42-dimensional MQN-space. No query molecule is necessary to start the exploration, which may be particularly attractive for nonchemists. To our knowledge, this type of interactive exploration tool is unprecedented for very large databases such as PubChem and GDB-13 (almost one billion molecules). The application is freely available for download at www.gdb.unibe.ch.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our research project develops an intranet search engine with concept- browsing functionality, where the user is able to navigate the conceptual level in an interactive, automatically generated knowledge map. This knowledge map visualizes tacit, implicit knowledge, extracted from the intranet, as a network of semantic concepts. Inductive and deductive methods are combined; a text ana- lytics engine extracts knowledge structures from data inductively, and the en- terprise ontology provides a backbone structure to the process deductively. In addition to performing conventional keyword search, the user can browse the semantic network of concepts and associations to find documents and data rec- ords. Also, the user can expand and edit the knowledge network directly. As a vision, we propose a knowledge-management system that provides concept- browsing, based on a knowledge warehouse layer on top of a heterogeneous knowledge base with various systems interfaces. Such a concept browser will empower knowledge workers to interact with knowledge structures.