10 resultados para Integrable lattice models
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
We calculate the all-loop anomalous dimensions of current operators in λ-deformed σ-models. For the isotropic integrable deformation and for a semi-simple group G we compute the anomalous dimensions using two different methods. In the first we use the all-loop effective action and in the second we employ perturbation theory along with the Callan–Symanzik equation and in conjunction with a duality-type symmetry shared by these models. Furthermore, using CFT techniques we compute the all-loop anomalous dimension of bilinear currents for the isotropic deformation case and a general G . Finally we work out the anomalous dimension matrix for the cases of anisotropic SU(2) and the two couplings, corresponding to the symmetric coset G/H and a subgroup H, splitting of a group G.
Resumo:
A variety of lattice discretisations of continuum actions has been considered, usually requiring the correct classical continuum limit. Here we discuss “weird” lattice formulations without that property, namely lattice actions that are invariant under most continuous deformations of the field configuration, in one version even without any coupling constants. It turns out that universality is powerful enough to still provide the correct quantum continuum limit, despite the absence of a classical limit, or a perturbative expansion. We demonstrate this for a set of O(N) models (or non-linear σ-models). Amazingly, such “weird” lattice actions are not only in the right universality class, but some of them even have practical benefits, in particular an excellent scaling behaviour.
Resumo:
Using ultracold alkaline-earth atoms in optical lattices, we construct a quantum simulator for U(N) and SU(N) lattice gauge theories with fermionic matter based on quantum link models. These systems share qualitative features with QCD, including chiral symmetry breaking and restoration at nonzero temperature or baryon density. Unlike classical simulations, a quantum simulator does not suffer from sign problems and can address the corresponding chiral dynamics in real time.
Resumo:
Abelian and non-Abelian gauge theories are of central importance in many areas of physics. In condensed matter physics, AbelianU(1) lattice gauge theories arise in the description of certain quantum spin liquids. In quantum information theory, Kitaev’s toric code is a Z(2) lattice gauge theory. In particle physics, Quantum Chromodynamics (QCD), the non-Abelian SU(3) gauge theory of the strong interactions between quarks and gluons, is nonperturbatively regularized on a lattice. Quantum link models extend the concept of lattice gauge theories beyond the Wilson formulation, and are well suited for both digital and analog quantum simulation using ultracold atomic gases in optical lattices. Since quantum simulators do not suffer from the notorious sign problem, they open the door to studies of the real-time evolution of strongly coupled quantum systems, which are impossible with classical simulation methods. A plethora of interesting lattice gauge theories suggests itself for quantum simulation, which should allow us to address very challenging problems, ranging from confinement and deconfinement, or chiral symmetry breaking and its restoration at finite baryon density, to color superconductivity and the real-time evolution of heavy-ion collisions, first in simpler model gauge theories and ultimately in QCD.
Resumo:
A quantum simulator of U(1) lattice gauge theories can be implemented with superconducting circuits. This allows the investigation of confined and deconfined phases in quantum link models, and of valence bond solid and spin liquid phases in quantum dimer models. Fractionalized confining strings and the real-time dynamics of quantum phase transitions are accessible as well. Here we show how state-of-the-art superconducting technology allows us to simulate these phenomena in relatively small circuit lattices. By exploiting the strong non-linear couplings between quantized excitations emerging when superconducting qubits are coupled, we show how to engineer gauge invariant Hamiltonians, including ring-exchange and four-body Ising interactions. We demonstrate that, despite decoherence and disorder effects, minimal circuit instances allow us to investigate properties such as the dynamics of electric flux strings, signaling confinement in gauge invariant field theories. The experimental realization of these models in larger superconducting circuits could address open questions beyond current computational capability.
Resumo:
We use quantum link models to construct a quantum simulator for U(N) and SU(N) lattice gauge theories. These models replace Wilson’s classical link variables by quantum link operators, reducing the link Hilbert space to a finite number of dimensions. We show how to embody these quantum link models with fermionic matter with ultracold alkaline-earth atoms using optical lattices. Unlike classical simulations, a quantum simulator does not suffer from sign problems and can thus address the corresponding dynamics in real time. Using exact diagonalization results we show that these systems share qualitative features with QCD, including chiral symmetry breaking and we study the expansion of a chirally restored region in space in real time.
Resumo:
We construct two-parameter families of integrable λ -deformations of two-dimensional field theories. These interpolate between a CFT (a WZW/gauged WZW model) and the non-Abelian T-dual of a principal chiral model on a group/symmetric coset space. In examples based on the SU(2) WZW model and the SU(2)/U(1) exact coset CFT, we show that these deformations are related to bi-Yang–Baxter generalisations of η-deformations via Poisson–Lie T-duality and analytic continuation. We illustrate the quantum behaviour of our models under RG flow. As a byproduct we demonstrate that the bi-Yang–Baxter σ-model for a general group is one-loop renormalisable.