10 resultados para Insulating silica capillary tubes

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Capillary zone electrophoresis (CZE) with a dynamic double coating based on the new CEofix reagents is shown to provide high-resolution separations of serum transferrin (Tf) isoforms, a prerequisite for the monitoring of unusual and complex Tf patterns, including those seen with genetic variants and disorders of glycosylation. A 50 microm I.D. fused-silica capillary of 60 cm total length, an applied voltage of 20 kV and a capillary temperature of 30 degrees C results in 15 min CZE runs of high assay precision and thus provides a robust approach for the determination of carbohydrate-deficient transferrin (CDT, sum of asialo-Tf and disialo-Tf in relation to total Tf) in human serum. Except for selected samples of patients with severe liver diseases and sera with high levels of paraproteins, interference-free Tf patterns are detected. Compared with the use of the previous CEofix reagents for CDT under the same instrumental conditions, the resolution between disialo-Tf and trisialo-Tf is significantly higher (1.7 versus 1.4). The CDT levels of reference and patient sera are comparable, suggesting that the new assay can be applied for screening and confirmation analyses. The high-resolution CZE assay represents an attractive alternative to HPLC and can be regarded as a candidate of a reference method for CDT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The improvement and performance of a micellar electrokinetic capillary chromatography assay for cefepime in human serum and plasma with a 50 μm id fused-silica capillary elongated from 40 to 60 cm is reported. Sample preparation with dodecylsulfate protein precipitation at pH 4.5, the pH 9.1 separation medium and the applied voltage were as reported previously[16]. The change resulted in a significant lower current, higher resolution and increased detection time intervals. The performance of the assay with multi-level internal calibration was assessed with calibration and control samples. Quality assurance data of a two year period assessed under the new conditions demonstrated the robustness of the assay. In serum samples of patients who received both cefepime and sulfamethoxazole, cefepime could not be detected due to the inseparability of the two compounds. The presence of an interference can be recognized by an increased peak width (width > 0.2 min), the appearance of a shoulder or an unresolved double peak. The patient data gathered during a three year period reveal that introduction of therapeutic drug monitoring led to a 50% reduction of the median drug level. The data suggest that therapeutic drug monitoring can help to minimize the risk of major adverse reactions and to increase drug safety on an individual basis. This article is protected by copyright. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new technique for on-line high resolution isotopic analysis of liquid water, tailored for ice core studies is presented. We built an interface between a Wavelength Scanned Cavity Ring Down Spectrometer (WS-CRDS) purchased from Picarro Inc. and a Continuous Flow Analysis (CFA) system. The system offers the possibility to perform simultaneuous water isotopic analysis of δ18O and δD on a continuous stream of liquid water as generated from a continuously melted ice rod. Injection of sub μl amounts of liquid water is achieved by pumping sample through a fused silica capillary and instantaneously vaporizing it with 100% efficiency in a~home made oven at a temperature of 170 °C. A calibration procedure allows for proper reporting of the data on the VSMOW–SLAP scale. We apply the necessary corrections based on the assessed performance of the system regarding instrumental drifts and dependance on the water concentration in the optical cavity. The melt rates are monitored in order to assign a depth scale to the measured isotopic profiles. Application of spectral methods yields the combined uncertainty of the system at below 0.1‰ and 0.5‰ for δ18O and δD, respectively. This performance is comparable to that achieved with mass spectrometry. Dispersion of the sample in the transfer lines limits the temporal resolution of the technique. In this work we investigate and assess these dispersion effects. By using an optimal filtering method we show how the measured profiles can be corrected for the smoothing effects resulting from the sample dispersion. Considering the significant advantages the technique offers, i.e. simultaneuous measurement of δ18O and δD, potentially in combination with chemical components that are traditionally measured on CFA systems, notable reduction on analysis time and power consumption, we consider it as an alternative to traditional isotope ratio mass spectrometry with the possibility to be deployed for field ice core studies. We present data acquired in the field during the 2010 season as part of the NEEM deep ice core drilling project in North Greenland.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The analysis of ethyl glucuronide (EtG), a marker of recent alcohol consumption, in serum with an optimized CZE assay is reported. The method uses a 0.1-mm id fused-silica capillary of 50 cm effective length that is coated with linear polyacrylamide, a pH 4.4 nicotinic acid/epsilon-aminocaproic acid (EACA) BGE, reversed polarity and indirect analyte detection. The assay is based on a 1:1 dilution of serum with deionized water and has LODs for EtG, lactate and acetate of 3.8 x 10(-7) M, 2.60 x 10(-6 )M and 2.18 x 10(-6 )M, respectively. Separation of EtG from endogenous macro- and microcomponents (anionic serum components of high and low concentration, respectively) and its quantification are shown to be possible for a wide range of lactate (stacker) and acetate (destacker) concentrations, macrocomponents that have an impact on the CZE behavior of EtG and that change after intake of ethanol. The assay has been successfully applied to the analysis of EtG, lactate and acetate in (i) sera of volunteers that ingested known amounts of alcohol and (ii) samples of patients that were classified (teetotalers and social drinkers vs. alcohol abusers) via analysis of carbohydrate-deficient transferrin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Execution of an enzymatic reaction performed in a capillary with subsequent electrophoretic analysis of the formed products is referred to as electrophoretically mediated microanalysis (EMMA). An EMMA method was developed to investigate the stereoselectivity of the CYP3A4-mediated N-demethylation of ketamine. Ketamine was incubated in a 50 μm id bare fused-silica capillary together with human CYP3A4 Supersomes using a 100 mM phosphate buffer (pH 7.4) at 37°C. A plug containing racemic ketamine and the NADPH regenerating system including all required cofactors for the enzymatic reaction was injected, followed by a plug of the metabolizing enzyme CYP3A4 (500 nM). These two plugs were bracketed by plugs of incubation buffer to ensure proper conditions for the enzymatic reaction. The rest of the capillary was filled with a pH 2.5 running buffer comprising 50 mM Tris, phosphoric acid, and 2% w/v of highly sulfated γ-cyclodextrin. Mixing of reaction plugs was enhanced via application of -10 kV for 10 s. After an incubation of 8 min at 37°C without power application (zero-potential amplification), the capillary was cooled to 25°C within 3 min followed by application of -10 kV for the separation and detection of the formed enantiomers of norketamine. Norketamine formation rates were fitted to the Michaelis-Menten model and the elucidated values for V(max) and K(m) were found to be comparable to those obtained from the off-line assay of a previous study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Application of pressure-driven laminar flow has an impact on zone and boundary dispersion in open tubular CE. The GENTRANS dynamic simulator for electrophoresis was extended with Taylor-Aris diffusivity which accounts for dispersion due to the parabolic flow profile associated with pressure-driven flow. Effective diffusivity of analyte and system zones as functions of the capillary diameter and the amount of flow in comparison to molecular diffusion alone were studied for configurations with concomitant action of imposed hydrodynamic flow and electroosmosis. For selected examples under realistic experimental conditions, simulation data are compared with those monitored experimentally using modular CE setups featuring both capacitively coupled contactless conductivity and UV absorbance detection along a 50 μm id fused-silica capillary of 90 cm total length. The data presented indicate that inclusion of flow profile based Taylor-Aris diffusivity provides realistic simulation data for analyte and system peaks, particularly those monitored in CE with conductivity detection.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A set of optimized deposition conditions for the inner wall coating of fused silica tubes with amorphous selenium was elaborated. The method is based on the vapor transport deposition of pure elemental selenium on a cooled substrate held at liquid nitrogen temperatures. Morphological and structural examination of the deposited layer was performed by optical microscopy and X-ray diffraction studies. Neutron activated selenium was used to monitor the deposition pattern and its stability under high gas flows. Monte Carlo simulations allowed the estimation of the different Se species composing the amorphous phase, at the given experimental deposition conditions. The versatility of the coating method presented in this work allows for the coating of tubes of different lengths and diameters, opening the way for several applications of amorphous selenium films in various fields.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our dynamic capillary electrophoresis model which uses material specific input data for estimation of electroosmosis was applied to investigate fundamental aspects of isoelectric focusing (IEF) in capillaries or microchannels made from bare fused-silica (FS), FS coated with a sulfonated polymer, polymethylmethacrylate (PMMA) and poly(dimethylsiloxane) (PDMS). Input data were generated via determination of the electroosmotic flow (EOF) using buffers with varying pH and ionic strength. Two models are distinguished, one that neglects changes of ionic strength and one that includes the dependence between electroosmotic mobility and ionic strength. For each configuration, the models provide insight into the magnitude and dynamics of electroosmosis. The contribution of each electrophoretic zone to the net EOF is thereby visualized and the amount of EOF required for the detection of the zone structures at a particular location along the capillary, including at its end for MS detection, is predicted. For bare FS, PDMS and PMMA, simulations reveal that EOF is decreasing with time and that the entire IEF process is characterized by the asymptotic formation of a stationary steady-state zone configuration in which electrophoretic transport and electroosmotic zone displacement are opposite and of equal magnitude. The location of immobilization of the boundary between anolyte and most acidic carrier ampholyte is dependent on EOF, i.e. capillary material and anolyte. Overall time intervals for reaching this state in microchannels produced by PDMS and PMMA are predicted to be similar and about twice as long compared to uncoated FS. Additional mobilization for the detection of the entire pH gradient at the capillary end is required. Using concomitant electrophoretic mobilization with an acid as coanion in the catholyte is shown to provide sufficient additional cathodic transport for that purpose. FS capillaries dynamically double coated with polybrene and poly(vinylsulfonate) are predicted to provide sufficient electroosmotic pumping for detection of the entire IEF gradient at the cathodic column end.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of capillary zone electrophoresis (CZE) with indirect absorbance detection for the analysis of ethyl sulfate (EtS) in serum and urine was investigated. EtS is a direct metabolite of ethanol employed as marker for recent alcohol consumption. Fused-silica capillaries of 60 cm total length were either coated with cetyltrimethylammonium bromide (CTAB, 50 microm I.D. capillary) or poly(diallyldimethylammonium chloride) (PDADMAC, 100 microm I.D. capillary) to allow CZE analyses to be performed with reversed polarity. At pH 2.2 with a maleic acid/phthalic acid background electrolyte, both approaches provided reliable EtS serum levels down to 0.2 mg L(-1) (1.6 microM) for the analysis of solid-phase extracts that were prepared after chloride precipitation. Analysis of urines diluted to a conductivity of 5 S m(-1) and analyzed in the two capillary formats resulted in limits of quantification (LOQs) of 2 and 1 mg L(-1), respectively. With urines adjusted to 10 S m(-1) via dilution or condensation, an LOQ of 0.6 mg L(-1) (4.8 microM) was obtained in the CTAB coated capillary whereas in the PDADMAC-coated capillary of equal length not all matrix components were resolved from EtS. The developed assays are robust and suitable to monitor EtS in samples of individuals who consumed as little as one standard drink of an alcoholic beverage containing about 14 g of ethanol.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Capillary zone electrophoresis (CZE) in fused-silica capillaries is an effective analytical approach for the separation and determination of the transferrin (Tf) isoforms and thus carbohydrate-deficient transferrin (CDT) in human serum. Sera of patients with progressed liver cirrhosis are prone to interferences in the beta region which prevent the proper determination of CDT by CZE without additional sample preparation. Efforts to identify, reduce or even eliminate these interferences have been undertaken. Data obtained by ultrafiltration, affinity subtraction procedures using protein A, protein L and antibodies against immunoglobulins or Tf, and immunopurification of Tf suggest that the interferences in the patient sera are caused by increased levels of IgA and IgM and are best eliminated by immunopurification. Avian IgY antibody spin column immunocapture of serum Tf followed by CZE analysis of the stripped and concentrated fraction is shown to provide an attractive approach for CDT monitoring in sera with beta region interferences.