12 resultados para Information dispersal algorithm
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
In this paper we propose a variational approach for multimodal image registration based on the diffeomorphic demons algorithm. Diffeomorphic demons has proven to be a robust and efficient way for intensity-based image registration. However, the main drawback is that it cannot deal with multiple modalities. We propose to replace the standard demons similarity metric (image intensity differences) by point-wise mutual information (PMI) in the energy function. By comparing the accuracy between our PMI based diffeomorphic demons and the B-Spline based free-form deformation approach (FFD) on simulated deformations, we show the proposed algorithm performs significantly better.
Resumo:
INTRODUCTION: Guidelines for the treatment of patients in severe hypothermia and mainly in hypothermic cardiac arrest recommend the rewarming using the extracorporeal circulation (ECC). However,guidelines for the further in-hospital diagnostic and therapeutic approach of these patients, who often suffer from additional injuries—especially in avalanche casualties, are lacking. Lack of such algorithms may relevantly delay treatment and put patients at further risk. Together with a multidisciplinary team, the Emergency Department at the University Hospital in Bern, a level I trauma centre, created an algorithm for the in-hospital treatment of patients with hypothermic cardiac arrest. This algorithm primarily focuses on the decision-making process for the administration of ECC. THE BERNESE HYPOTHERMIA ALGORITHM: The major difference between the traditional approach, where all hypothermic patients are primarily admitted to the emergency centre, and our new algorithm is that hypothermic cardiac arrest patients without obvious signs of severe trauma are taken to the operating theatre without delay. Subsequently, the interdisciplinary team decides whether to rewarm the patient using ECC based on a standard clinical trauma assessment, serum potassium levels, core body temperature, sonographic examinations of the abdomen, pleural space, and pericardium, as well as a pelvic X-ray, if needed. During ECC, sonography is repeated and haemodynamic function as well as haemoglobin levels are regularly monitored. Standard radiological investigations according to the local multiple trauma protocol are performed only after ECC. Transfer to the intensive care unit, where mild therapeutic hypothermia is maintained for another 12 h, should not be delayed by additional X-rays for minor injuries. DISCUSSION: The presented algorithm is intended to facilitate in-hospital decision-making and shorten the door-to-reperfusion time for patients with hypothermic cardiac arrest. It was the result of intensive collaboration between different specialties and highlights the importance of high-quality teamwork for rare cases of severe accidental hypothermia. Information derived from the new International Hypothermia Registry will help to answer open questions and further optimize the algorithm.
Resumo:
Successful software systems cope with complexity by organizing classes into packages. However, a particular organization may be neither straightforward nor obvious for a given developer. As a consequence, classes can be misplaced, leading to duplicated code and ripple effects with minor changes effecting multiple packages. We claim that contextual information is the key to rearchitecture a system. Exploiting contextual information, we propose a technique to detect misplaced classes by analyzing how client packages access the classes of a given provider package. We define locality as a measure of the degree to which classes reused by common clients appear in the same package. We then use locality to guide a simulated annealing algorithm to obtain optimal placements of classes in packages. The result is the identification of classes that are candidates for relocation. We apply the technique to three applications and validate the usefulness of our approach via developer interviews.
Resumo:
Abstract Xyleborini are a species-rich tribe of ambrosia beetles, which are haplodiploid and typically mate among siblings within their natal brood chamber. Several characteristics of this tribe would predict the evolution of higher levels of sociality: high genetic relatedness within galleries due to inbreeding, high costs of dispersal and the potential benefit of cooperation in brood care within the natal gallery (e.g. by fungus gardening, gallery extension, offspring feeding and cleaning). However, information on the social system of these beetles is very limited. We examined the potential for cooperative breeding in Xyleborinus saxeseni by monitoring dispersal in relation to brood size and composition. Results show that adult female offspring delay dispersal despite dispersal opportunities, and apparently some females never disperse. The femalesâ?? decision to stay seems to depend on the presence of eggs and dependent siblings. We found no indication that female offspring reproduce in their natal gallery, as colonies with many mature daughters do not contain more eggs than those with few or no daughters. There is a significant positive relationship between the number of females present and the number of dependent siblings (but not eggs), which suggests that cooperative brood care of female offspring raises colony productivity by improving survival rates of immatures. Our results suggest that cooperative breeding is likely to occur in X. saxeseni and possibly other xyleborine species. We argue that a closer look at sociality within this tribe may yield important information on the factors determining the evolution of cooperative breeding and advanced social organization.
Resumo:
PURPOSE To extend the capabilities of the Cone Location and Magnitude Index algorithm to include a combination of topographic information from the anterior and posterior corneal surfaces and corneal thickness measurements to further improve our ability to correctly identify keratoconus using this new index: ConeLocationMagnitudeIndex_X. DESIGN Retrospective case-control study. METHODS Three independent data sets were analyzed: 1 development and 2 validation. The AnteriorCornealPower index was calculated to stratify the keratoconus data from mild to severe. The ConeLocationMagnitudeIndex algorithm was applied to all tomography data collected using a dual Scheimpflug-Placido-based tomographer. The ConeLocationMagnitudeIndex_X formula, resulting from analysis of the Development set, was used to determine the logistic regression model that best separates keratoconus from normal and was applied to all data sets to calculate PercentProbabilityKeratoconus_X. The sensitivity/specificity of PercentProbabilityKeratoconus_X was compared with the original PercentProbabilityKeratoconus, which only uses anterior axial data. RESULTS The AnteriorCornealPower severity distribution for the combined data sets are 136 mild, 12 moderate, and 7 severe. The logistic regression model generated for ConeLocationMagnitudeIndex_X produces complete separation for the Development set. Validation Set 1 has 1 false-negative and Validation Set 2 has 1 false-positive. The overall sensitivity/specificity results for the logistic model produced using the ConeLocationMagnitudeIndex_X algorithm are 99.4% and 99.6%, respectively. The overall sensitivity/specificity results for using the original ConeLocationMagnitudeIndex algorithm are 89.2% and 98.8%, respectively. CONCLUSIONS ConeLocationMagnitudeIndex_X provides a robust index that can detect the presence or absence of a keratoconic pattern in corneal tomography maps with improved sensitivity/specificity from the original anterior surface-only ConeLocationMagnitudeIndex algorithm.
Resumo:
Upon leaving their natal area, dispersers are confronted with unknown terrains. Species-specific perceptual ranges (i.e. the maximum distance from which an individual can perceive landscape features) play a crucial role in spatial movement decisions during such wanderings. In nocturnal animals that rely on vision, perceptual range is dramatically enhanced during moonlight, compared to moonless conditions. This increase of the perceptual range is an overlooked element that may be responsible for the successful crossing of unfamiliar areas during dispersal. The information gathered from 143 radio-tagged eagle owl Bubo bubo juveniles in Spain, Finland and Switzerland shows that, although the decision to initiate dispersal is mainly an endogenous phenomenon determined by the attainment of a given age (∼6 months), dispersers leave their birthplace primarily under the best light conditions at night, i.e. when most of the lunar disc is illuminated. This sheds new light into the mechanisms that may trigger dispersal from parental territory.
Resumo:
We present an application and sample independent method for the automatic discrimination of noise and signal in optical coherence tomography Bscans. The proposed algorithm models the observed noise probabilistically and allows for a dynamic determination of image noise parameters and the choice of appropriate image rendering parameters. This overcomes the observer variability and the need for a priori information about the content of sample images, both of which are challenging to estimate systematically with current systems. As such, our approach has the advantage of automatically determining crucial parameters for evaluating rendered image quality in a systematic and task independent way. We tested our algorithm on data from four different biological and nonbiological samples (index finger, lemon slices, sticky tape, and detector cards) acquired with three different experimental spectral domain optical coherence tomography (OCT) measurement systems including a swept source OCT. The results are compared to parameters determined manually by four experienced OCT users. Overall, our algorithm works reliably regardless of which system and sample are used and estimates noise parameters in all cases within the confidence interval of those found by observers.
Resumo:
Information-centric networking (ICN) enables communication in isolated islands, where fixed infrastructure is not available, but also supports seamless communication if the infrastructure is up and running again. In disaster scenarios, when a fixed infrastructure is broken, content discovery algorit hms are required to learn what content is locally available. For example, if preferred content is not available, users may also be satisfied with second best options. In this paper, we describe a new content discovery algorithm and compare it to existing Depth-first and Breadth-first traversal algorithms. Evaluations in mobile scenarios with up to 100 nodes show that it results in better performance, i.e., faster discovery time and smaller traffic overhead, than existing algorithms.
Resumo:
Indoor positioning has become an emerging research area because of huge commercial demands for location-based services in indoor environments. Channel State Information (CSI) as a fine-grained physical layer information has been recently proposed to achieve high positioning accuracy by using range-based methods, e.g., trilateration. In this work, we propose to fuse the CSI-based ranges and velocity estimated from inertial sensors by an enhanced particle filter to achieve highly accurate tracking. The algorithm relies on some enhanced ranging methods and further mitigates the remaining ranging errors by a weighting technique. Additionally, we provide an efficient method to estimate the velocity based on inertial sensors. The algorithms are designed in a network-based system, which uses rather cheap commercial devices as anchor nodes. We evaluate our system in a complex environment along three different moving paths. Our proposed tracking method can achieve 1:3m for mean accuracy and 2:2m for 90% accuracy, which is more accurate and stable than pedestrian dead reckoning and range-based positioning.
Resumo:
Most previous attempts at reconstructing the past history of human populations did not explicitly take geography into account, or considered very simple scenarios of migration and ignored environmental information. However, it is likely that the Last Glacial Maximum (LGM) affected the demography and the range of many species, including our own. Moreover, long-distance dispersal (LDD) may have been an important component of human migrations, allowing fast colonization of new territories and preserving high levels of genetic diversity. Here, we use a high-quality microsatellite dataset genotyped in 22 populations to estimate the posterior probabilities of several scenarios for the settlement of the Old World by modern humans. We considered models ranging from a simple spatial expansion to others including LDD and a LGM-induced range contraction, as well as Neolithic demographic expansions. We find that scenarios with LDD are much better supported by data than models without LDD. Nevertheless, we show evidence that LDD events to empty habitats were strongly prevented during the settlement of Eurasia. This unexpected absence of LDD ahead of the colonization wave front could have been caused by an Allee effect, either due to intrinsic causes such as an inbreeding depression built during the expansion, or to extrinsic causes such as direct competition with archaic humans. Overall, our results suggest only a relatively limited effect of the LGM-contraction on current patterns of human diversity. This is in clear contrast with the major role of LDD migrations, which have potentially contributed to the intermingled genetic structure of Eurasian populations.
Resumo:
Indoor positioning has become an emerging research area because of huge commercial demands for location-based services in indoor environments. Channel State Information (CSI) as fine-grained physical layer information has been recently proposed to achieve high positioning accuracy by using range based methods, e.g., trilateration. In this work, we propose to fuse the CSI-based ranging and velocity estimated from inertial sensors by an enhanced particle filter to achieve highly accurate tracking. The algorithm relies on some enhanced ranging methods and further mitigates the remaining ranging errors by a weighting technique. Additionally, we provide an efficient method to estimate the velocity based on inertial sensors. The algorithms are designed in a network-based system, which uses rather cheap commercial devices as anchor nodes. We evaluate our system in a complex environment along three different moving paths. Our proposed tracking method can achieve 1.3m for mean accuracy and 2.2m for 90% accuracy, which is more accurate and stable than pedestrian dead reckoning and range-based positioning.
Resumo:
Information-centric networking (ICN) is a new communication paradigm that has been proposed to cope with drawbacks of host-based communication protocols, namely scalability and security. In this thesis, we base our work on Named Data Networking (NDN), which is a popular ICN architecture, and investigate NDN in the context of wireless and mobile ad hoc networks. In a first part, we focus on NDN efficiency (and potential improvements) in wireless environments by investigating NDN in wireless one-hop communication, i.e., without any routing protocols. A basic requirement to initiate informationcentric communication is the knowledge of existing and available content names. Therefore, we develop three opportunistic content discovery algorithms and evaluate them in diverse scenarios for different node densities and content distributions. After content names are known, requesters can retrieve content opportunistically from any neighbor node that provides the content. However, in case of short contact times to content sources, content retrieval may be disrupted. Therefore, we develop a requester application that keeps meta information of disrupted content retrievals and enables resume operations when a new content source has been found. Besides message efficiency, we also evaluate power consumption of information-centric broadcast and unicast communication. Based on our findings, we develop two mechanisms to increase efficiency of information-centric wireless one-hop communication. The first approach called Dynamic Unicast (DU) avoids broadcast communication whenever possible since broadcast transmissions result in more duplicate Data transmissions, lower data rates and higher energy consumption on mobile nodes, which are not interested in overheard Data, compared to unicast communication. Hence, DU uses broadcast communication only until a content source has been found and then retrieves content directly via unicast from the same source. The second approach called RC-NDN targets efficiency of wireless broadcast communication by reducing the number of duplicate Data transmissions. In particular, RC-NDN is a Data encoding scheme for content sources that increases diversity in wireless broadcast transmissions such that multiple concurrent requesters can profit from each others’ (overheard) message transmissions. If requesters and content sources are not in one-hop distance to each other, requests need to be forwarded via multi-hop routing. Therefore, in a second part of this thesis, we investigate information-centric wireless multi-hop communication. First, we consider multi-hop broadcast communication in the context of rather static community networks. We introduce the concept of preferred forwarders, which relay Interest messages slightly faster than non-preferred forwarders to reduce redundant duplicate message transmissions. While this approach works well in static networks, the performance may degrade in mobile networks if preferred forwarders may regularly move away. Thus, to enable routing in mobile ad hoc networks, we extend DU for multi-hop communication. Compared to one-hop communication, multi-hop DU requires efficient path update mechanisms (since multi-hop paths may expire quickly) and new forwarding strategies to maintain NDN benefits (request aggregation and caching) such that only a few messages need to be transmitted over the entire end-to-end path even in case of multiple concurrent requesters. To perform quick retransmission in case of collisions or other transmission errors, we implement and evaluate retransmission timers from related work and compare them to CCNTimer, which is a new algorithm that enables shorter content retrieval times in information-centric wireless multi-hop communication. Yet, in case of intermittent connectivity between requesters and content sources, multi-hop routing protocols may not work because they require continuous end-to-end paths. Therefore, we present agent-based content retrieval (ACR) for delay-tolerant networks. In ACR, requester nodes can delegate content retrieval to mobile agent nodes, which move closer to content sources, can retrieve content and return it to requesters. Thus, ACR exploits the mobility of agent nodes to retrieve content from remote locations. To enable delay-tolerant communication via agents, retrieved content needs to be stored persistently such that requesters can verify its authenticity via original publisher signatures. To achieve this, we develop a persistent caching concept that maintains received popular content in repositories and deletes unpopular content if free space is required. Since our persistent caching concept can complement regular short-term caching in the content store, it can also be used for network caching to store popular delay-tolerant content at edge routers (to reduce network traffic and improve network performance) while real-time traffic can still be maintained and served from the content store.